• 제목/요약/키워드: COV of IMEP

검색결과 24건 처리시간 0.02초

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions

  • Cho, Haeng-Muk;He, Bang-Quan
    • Environmental Engineering Research
    • /
    • 제14권2호
    • /
    • pp.95-101
    • /
    • 2009
  • Natural gas is a promising alternative fuel of internal combustion engines. In this paper, the combustion and emission characteristics were investigated on a natural gas engine at two different fuel injection timings during the intake stroke. The results show that fuel injection timing affects combustion processes. The optimum spark timing (MBT) achieving the maximum indicated mean effective pressure (IMEP) is related to fuel injection timing and air fuel ratio. At MBT spark timing, late fuel injection timing delays ignition timing and prolongs combustion duration in most cases. But fuel injection timing has little effect on IMEP at fixed lambdas. The coefficient of variation (COV) of IMEP is dependent on air fuel ratio, throttle positions and fuel injection timings at MBT spark timing. The COV of IMEP increases with lambda in most cases. Late fuel injection timings can reduce the COV of IMEP at part loads. Moreover, engine-out CO and total hydrocarbon (THC) emissions can be reduced at late fuel injection timing.

Experimental Study on the Cycle-to-Cycle Combustion Variations in a Spark Ignition Engine

  • Han, Sung Bin;Hwang, Sung Il
    • 에너지공학
    • /
    • 제22권2호
    • /
    • pp.197-204
    • /
    • 2013
  • A cyclic variability has long been recognized as limiting the range of operating conditions of spark ignition engines, in particular, under idling conditions. The coefficient of variation (COV) in indicated mean effective pressure (IMEP) defines the cyclic variability in indicated work per cycle, and it has been found that vehicle drivability problems usually result. For analysis of the cyclic variations in spark ignition engines at idling, the results show that cyclic variability by the COV, COV of IMEP, the lowest normalized value (LNV), and burn angles can help to design the spark ignition engine.

공회전에서 스파크 점화기관 연소의 사이클 변동 해석 (Analysis of the Cyclic Variability in SI Engine at Idling)

  • 한성빈;장용훈
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.709-717
    • /
    • 2000
  • Cyclic variability has long been recognized as limiting the range of operating conditions of spark ignition engines, in particular, under lean and highly diluted operation conditions. The cyclic combustion variations can be characterized by the pressure parameters, combustion parameters, and flame front parameters. The coefficient of variation in indicated mean effective pressure ($COV_{IMEP}$) defines the cyclic variability in indicated work per cycle, and it has been found that vehicle driveability problems usually result when $COV_{IMEP}$ exceeds about 10%. For analysis of the cyclic variability in SI engines at idling, the results show that cyclic variability by the $COV_{IMEP}$ or the coefficient of variation in maximum pressure can be explained and may be consequently reduced by the help of the optimum spark timings.

Investigation of Cyclic Variations of IMEP Under Idling Operation in Spark Ignition Engines

  • Han, Sung-Bin
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.81-87
    • /
    • 2001
  • Cyclic variability limits the range of operating conditions of spark ignition engines, especially under lean and highly diluted operation conditions. The cyclic combustion variations can be characterized by pressure parameters, combustion related parameters, and flame-front related parameters. The coefficient of variation (COV) in indicated mean effective pressure (IMEP) defines the cyclic variability in indicated work per cycle.

  • PDF

가솔린 엔진에서 합성가스 첨가량에 따른 EGR 효과에 대한 연구 (A Study on the Effects of EGR with Syngas Addition in a Gasoline Engine)

  • 윤영준;최영;강건용
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.159-164
    • /
    • 2007
  • The purpose of this study is to reduce harmful emission gases in the range of stable combustion without loss of a thermal efficiency. Therefore, effects of both exhaust gas recirculation(EGR) and synthetic gas addition on engine performance and emission were investigated in a gasoline engine. Synthetic gas(syngas), which is in general prepared from reforming gasoline, was utilized in order to promote stable combustion. The major components of syngas are H2, CO and $N_2$ gases. The percentage of syngas addition was changed from 0 to 30% in energy fraction and EGR rate was varied up to 30%. As a result, $COV_{IMEP}$ as a parameter of combustion stability was decreased and THC/$NO_X$ emissions were reduced with the increase of syngas addition. And $COV_{IMEP}$ was increased with the increase of EGR but $NO_X$ emission was greatly reduced. In addition, under the region where the EGR rate is around 20%, thermal efficiency was improved.

The Effect of Exhaust Gas Recirculation (EGR) on Combustion Stability, Engine Performance and Exhaust Emissions In a Gasoline Engine

  • Jinyoung Cha;Junhong Kwon;Youngjin Cho;Park, Simsoo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1442-1450
    • /
    • 2001
  • The EGR system has been widely used to reduce nitrogen oxides (NO$\_$x/) emission, to improve fuel economy and suppress knock by using the characteristics of charge dilution. However, as the EGR rate at a given engine operating condition increases, the combustion instability increases. The combustion instability increases cyclic variations resulting in the deterioration of engine performance and emissions. Therefore, the optimum EGR rate should be carefully determined in order to obtain the better engine performance and emissions. An experimental study has been performed to investigate the effects of EGR on combustion stability, engine performance,70x and the other exhaust emissions from 1.5 liter gasoline engine. Operating conditions are selected from the test result of the high speed and high acceleration region of SFTP mode which generates more NO$\_$x/ and needs higher engine speed compared to FTP-75 (Federal Test Procedure) mode. Engine power, fuel consumption and exhaust emissions are measured with various EGR rate. Combustion stability is analyzed by examining the variation of indicated mean effective pressure (COV$\_$imep/) and the timings of maximum pressure (P$\_$max/) location using pressure sensor. Engine performance is analyzed by investigating engine power and maximum cylinder pressure and brake specific fuel consumption (BSFC)

  • PDF

점화플러그 삽입 위치에 따른 SI 엔진의 연소특성에 관한 연구 (Investigation on Combustion Characteristics According to Spark Plug Protrusion in SI Engine)

  • 한영출;김대열
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1163-1171
    • /
    • 2004
  • The variation of spark plug location have one of the effects on combustion characteristics. Several parameters of the effect on combustion characteristics are shape of combustion chamber, the spark plug position, turbulence flow and so on. This paper presents an experimental study according to variation of spark plug protrusion and PDA valve which have effects on characteristics of combustion and emission in single cylinder gasoline engine. Also, this paper emphasized that combustion stabilization was making by way of the reinforcement of the turbulent flow with the PDA valve. A feasibility and necessity of combustion pressure based cylinder spark timing control according to spark plug protrusion has been examined. So, this was obtained COV$\_$imep/ and the mass fraction burned(MFB) and the specific fuel consumption(sfc). Using the results of the test, the effects of the variable spark plug location and PDA valve can be improved fuel consumption and be available for the combustion stability.

점화에너지 및 방전시간이 스파크 점화 기관의 성능에 미치는 영향 (A Study on the Effects of Ignition Energy and Discharge Duration on the Performances of Spark Ignited Engines)

  • 송정훈;서영호;선우명호
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.40-46
    • /
    • 2001
  • An experimental investigation is proceeded to study on the relationship between spark ignition characteristics and the performances of an S. I. engine. The ignition parameters examined in this study are the ignition energy and discharging duration. The combustion pressure and exhaust gas are measured during the experiment. From the measured data of cylinder pressure, the heat release rate, the mass fraction burned, and the COV of IMEP are calculated. The dwell time and the injection time are varied. A single cylinder engine and a 30kW dynamometer are employed. Four different kinds of ignition systems are assembled, and one commercial ignition system is adopted. The experimental results show that the ignition energy is increased as the dwell time extended until the ignition energy is saturated. The higher ignition energy is effective in achieving the laster burning velocity and less producing HC emission. However, when the amount of ignition energy is similar, while the discharge duration becomes longer, the burning velocity is reduced but the engine operation becomes stable in terms of the COV of IMEP.

  • PDF

RI-CNG 엔진에서 연료 분사시기에 따른 연소특성에 관한 연구 (Study on Combustion Characteristics with Fuel Injection Timing in a RI-CNG Engine)

  • 박종상;하동흔;염정국;하종률;정성식
    • 동력기계공학회지
    • /
    • 제12권4호
    • /
    • pp.5-11
    • /
    • 2008
  • The RI gasoline engine haying a sub-chamber had a high cycle variation due to the difficulty of the residual gas scavenge in the sub-chamber. To solve this problem and improve the combustion performance of RI engine, we devised a method to inject directly CNG fuel into the sub-chamber. A DI diesel engine of single cylinder was converted into a RI-CNG engine and an electronic control unit for the engine was manufactured. In this study, the combustion characteristics of the RI-CNG engine were investigated with the injection timings and air excess ratios at the load conditions of 50% throttle open rate and 1700rpm. As the results from this study, the RI-CNG engine worked reliably under the condition of the ignitable lean limit of $\lambda=1.7$ by showing the $COV_{imep}$ below about 5%. And the highest thermal efficiency could be obtained in the injection timing that produced the high imep and the low $COV_{imep}$ at the same time. The CO emission concentration indicated very low values and the THC and $NO_x$ showed an opposite pattern. With a view to improving the thermal efficiency and reducing the harmful emissions, the proper control region of the ignition timing and the mixture ratio were nearly ATDC $20^{\circ}\sim50^{\circ}$ and $\lambda=1.4$ respectively.

  • PDF

Cycle-to-Cycle Variations Under Cylinder- Pressure- Based Combustion Analysis in Spark Ignition Engines

  • Han, Sung-Bin
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1151-1158
    • /
    • 2000
  • Combustion analysis based on cylinder-pressure provides a mechanism through which a combustion researcher can understand the combustion process. The objective of this paper was to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. To analyse the cyclic variation in a test engine, the burn parameters are determined on a cycle-to-cycle basis through the analysis of the engine pressure data. The burn rate analysis program was used here and the burn parameters were used to determine the variations in the input parameter-i. e., fuel, air, and residual mass. In this study, we investigated the relationship of indicated mean effective pressure (IMEP), coefficient of variation (COV) of IMEP, burn angles, and lowest normalized value (LNV) in a spark ignition engine in a view of cyclic variations.

  • PDF