• Title/Summary/Keyword: COUPLING

Search Result 7,582, Processing Time 0.033 seconds

A Highly Efficient Method of Light Coupling into Optical Fiber with a Tapered Microlens (Tapered Lens를 사용한 Light Source와 Optical Fiber의 고효율 Coupling)

  • 이상호;강민호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.4
    • /
    • pp.22-26
    • /
    • 1979
  • Microlenses with an extremely small radius of curvature are efficiently use d to couple LED/laser diode light into optica1 fiber. We propose a Tapered lens for the highly efficient coupling of the optical fiber communication light souses into the fiber. Ray optical analysis shows that the maximum coupling efficiency is as high as 90 %, Tapered lens with optimum parameters are fabricated by using heating and pulling technique. Experiment shows that this new technique improves the coupling efficiency by two and four times for LED and laser diode, respectively, as compared with the simple flat - end coupling.

  • PDF

Shear Strength Equation for Slender Diagonally Reinforced Coupling Beam (세장한 대각보강 연결보의 전단강도 예측식)

  • Han, Sang Whan;Kang, Jin Wook;Han, Chan Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.361-368
    • /
    • 2016
  • Coupling beams serve as primary source of energy dissipation in coupled shear wall systems during large earthquakes. However, the overestimation of the shear strength of diagonally reinforced coupling beams may be adverse effect on the seismic performance of coupled shear wall systems. In order to force coupling beams to properly work during earthquakes, coupling beams should be designed with accurate shear strength equations. The objective of this study is to propose the accurate shear strength equation for slender diagonally reinforced coupling beams. For this purpose, experimental tests were conducted using three diagonally reinforced coupling specimens with different amount of transverse reinforcement under reversed cyclic loads to evaluate the hysteretic behavior of the specimens. The test results show that transverse reinforcement of slender diagonally reinforced coupling beam affects the maximum strength and drift ratio.

Performance based evaluation of RC coupled shear wall system with steel coupling beam

  • Bengar, Habib Akbarzadeh;Aski, Roja Mohammadalipour
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.337-355
    • /
    • 2016
  • Steel coupling beam in reinforced concrete (RC) coupled shear wall system is a proper substitute for deep concrete coupling beam. Previous studies have shown that RC coupled walls with steel or concrete coupling beam designed with strength-based design approach, may not guarantee a ductile behavior of a coupled shear wall system. Therefore, seismic performance evaluation of RC coupled shear wall with steel or concrete coupling beam designed based on a strength-based design approach is essential. In this paper first, buildings with 7, 14 and 21 stories containing RC coupled shear wall system with concrete and steel coupling beams were designed with strength-based design approach, then performance level of these buildings were evaluated under two spectrum; Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE). The performance level of LS and CP of all buildings were satisfied under DBE and MCE respectively. In spite of the steel coupling beam, concrete coupling beam in RC coupled shear wall acts like a fuse under strong ground motion.

The Effect of Titanate Coupling Agents on the Electrical and Mechanical Properties of PVC-Ni Composite Systems (PVC-Ni 복합재의 전기적 ${\cdot}$ 기계적 성질에 미치는 Titanate Coupling Agent 의 영향)

  • Tak Jin Moon;Mi Kyung Lee;Sun Ho Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.319-327
    • /
    • 1985
  • The effect of titanate coupling agents on the electrical and mechanical properties of conductive poly (vinyl chloride)-nickel composite was studied as functions of filler concentration, the variation of the amount of titanate coupling agents and the type of titanate coupling agents. It was found that the electrical and mechanical properties of PVC-Ni system were improved by the treatment of titanate coupling agents, but the excessive use of titanate coupling agents influenced to give worse properties.

  • PDF

Characterization and Formation of Chemical Bonds of Silica-Coupling Agent-Rubber (실리카-커플링제-고무의 화학 결합 형성과 특성 분석)

  • Ko, Eunah;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.239-244
    • /
    • 2014
  • Reaction between silica and silane coupling agent without solvent was investigated using transmission mode Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Bis[3-(triethoxysilylpropyl) tetrasulfide] (TESPT) was used as a silane coupling agent. After removing the unreacted TESPT, formation of chemical bonds was analyzed using FTIR and content of reacted TESPT was determined using TGA. Content of the coupling agent bonded to silica increased with increase in the coupling agent content, but the oligomers were formed by condensation reaction between coupling agents when the coupling agent was used to excess. In order to identify bonds formed among silica, coupling agent, and rubber, a silica-coupling agent-BR model composite was prepared by reaction of the modified silica with liquid BR of low molecular weight and chemical bond formation of silica-coupling agent-BR was investigated. Unreacted rubber was removed with solvent and analysis was performed using FTIR and TGA. BR was reacted with the coupling agent of the modified silica to form chemical bonds. Polarity of silica surface was strikingly reduced and particle size of silica was increased by chemical bond formation of silica-coupling agent-BR.

Seismic Performance of Special Reinforced Concrete Coupling Beams with Different Reinforcement Details (보강상세에 따른 특수전단벽 연결보의 내진성능)

  • Chun, Young-Soo;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • Coupling beams posses proper strength, stiffness and ductility capacities to resist efficiently under seismic loads. The strength, stiffness and ductility capacities for special diagonally reinforced concrete coupling beam with a span-to-depth ratio 2.0 or less is higher than those of coupling beam with conventionally reinforced concrete coupling beam. However, diagonally reinforced detailing creates major construction problem. In this study, design alternatives for diagonally reinforced concrete coupling beams were experimentally investigated. The results show that angle reinforced coupling beam(specimen SA) exhibited a better stable behavior in comparison with non-diagonally coupling beams(specimens SB-series) and sustained corresponding drift ratio, peak-to-peak stiffness and cumulative dissipated energy in comparison to diagonally coupling beam(specimen CA).

Development of Signal Coupler for Power Line Communication over Medium Voltage Distribution Line (고압 배전선로 전력선 통신 신호결합장치 개발)

  • Lee Jae-Jo;Park Young-Jin;Oh Hui-Myoung;Kim Kwan-Ho;Lee Dae-Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.409-416
    • /
    • 2005
  • For broadband high-data-rate power line communication with the allocated frequency bandwidth from 2 to 30 MHz on medium voltage (MV) distribution power lines, a signal coupling unit is developed. The coupling unit is composed of a coupling capacitor for coupling communication signal, a drain coil, and an impedance matching part. The coupling capacitor made of ceramic capacitor is designed for transmission property of better than 1 dB in the frequency range. The drain coil is used for preventing low frequency high voltage from junction of medium voltage power line in case that a coupling capacitor is not working properly any more. Also, using ferrite core, a novel broadband impedance matching transformer is developed. A complete coupling unit with a coupling capacitor, a drain coil, and a matching transformer is housed by polymer for good isolation and distinguishing from high voltage electric facilities. Each is fabricated and its frequency behavior is tested. Finally, complete signal couplers are equipped in a MV PLC test bed and their performance are measured. The measurement shows that the coupling capacitor works excellently.

Nonlinear behavior of deep reinforced concrete coupling beams

  • Zhao, Z.Z.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.181-198
    • /
    • 2003
  • Six large scale models of conventionally reinforced concrete coupling beams with span/depth ratios ranging from 1.17 to 2.00 were tested under monotonically applied shear loads to study their nonlinear behavior using a newly developed test method that maintained equal rotations at the two ends of the coupling beam specimen and allowed for local deformations at the beam-wall joints. By conducting the tests under displacement control, the post-peak behavior and complete load-deflection curves of the coupling beams were obtained for investigation. It was found that after the appearance of flexural and shear cracks, a deep coupling beam would gradually transform itself from an ordinary beam to a truss composed of diagonal concrete struts and longitudinal and transverse steel reinforcement bars. Moreover, in a deep coupling beam, the local deformations at the beam-wall joints could contribute significantly (up to the order of 50%) to the total deflection of the coupling beam, especially at the post-peak stage. Finally, although a coupling beam failing in shear would have a relatively low ductility ratio of only 5 or even lower, a coupling beam failing in flexure could have a relatively high ductility ratio of 10 or higher.

Bus-waveguide-width Dependence of Evanescent Wave Coupling in a Microring Resonator

  • Son, Seong-Jin;Kim, Suyeon;Yu, Nan Ei;Ko, Do-Kyeong
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.538-543
    • /
    • 2021
  • The evanescent wave coupling of a microring resonator is controlled by changing the gap distance between the bus waveguide and the microring waveguide. However, the interdependence of the bus waveguide's width and the coupling is not well understood. In this paper, we investigate the dependence of coupling strength on the bus waveguide's width. The strength of the evanescent wave coupling is analytically calculated using coupled-mode theory (CMT) and numerically calculated by three-dimensional finite-difference-time-domain (FDTD) simulation. The analytic and numerical simulation results show that the phase-matching condition in evanescent wave coupling does not provide maximum coupling strength, because both phase-matching and mode confinement influence the coupling. The analytic and simulation results for the evanescent coupling correspond to the experimental results. The optimized bus-waveguide width that provides maximum coupling strength results in intrinsic quality factors of up to 1.3 × 106. This study provides reliable guidance for the design of microring resonators, depending on various applications.

Shear strength prediction of PRC coupling beams with low span-to-depth ratio

  • Tian, Jianbo;Shen, Dandan;Li, Shen;Jian, Zheng;Liu, Yunhe;Ren, Wengeng
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.757-769
    • /
    • 2019
  • The seismic performance of a coupled shear wall system is governed by the shear resistances of its coupling beams. The plate-reinforced composite (PRC) coupling beam is a newly developed form of coupling beam that exhibits high deformation and energy dissipation capacities. In this study, the shear capacity of plate-reinforced composite coupling beams was investigated. The shear strengths of PRC coupling beams with low span-to-depth ratios were calculated using a softened strut-and-tie model. In addition, a shear mechanical model and calculating method were established in combination with a multi-strip model. Furthermore, a simplified formula was proposed to calculate the shear strengths of PRC coupling beams with low span-to-depth ratios. An analytical model was proposed based on the force mechanism of the composite coupling beam and was proven to exhibit adequate accuracy when compared with the available test results. The comparative results indicated that the new shear model exhibited more reasonable assessment accuracy and higher reliability. This method included a definite mechanical model and reasonably reflected the failure mechanisms of PRC coupling beams with low span-to-depth ratios not exceeding 2.5.