• Title/Summary/Keyword: CORROSION

Search Result 7,495, Processing Time 0.035 seconds

Characteristics of defect on segmental lining of TBM tunnel in operational subway (운용중인 국내 지하철 TBM터널의 세그먼트라이닝 결함특성 분석)

  • Choo, Jinho;Lee, DongHun;Noh, EunChul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.109-128
    • /
    • 2022
  • The precise inspection for safety and diagnosis (PISD) of tunnel has been conducted by the special act on safety control of public structures. However, the present assessment for the segmental lining of TBM tunnel has limitation such as: NDTs for integrity, segmental configuration for field inspection, and consideration for jacking system. Even if the number of TBM tunnel is less than 1% of enrolled facility in FMS, more attention to maintenance should be necessary due to its usage such as multi-use facility and national important facility. Compared to NATM tunnel, excavated by drilling and blasting and then installed lining by cast-in-place within 6~12 m, TBM tunnel is cut out ground by disk and cutter-bit and then assembled 7 pieces of precast segment, 1.2~1.4 m wide. Different features of design, construction, and maintenance should be considered to be more exact evaluation of TBM tunnel. The characteristics of defect is categorized and analyzed with 11 operational TBM tunnels in domestic subway. To be more comprehend various particular defects, foreign studies have been also adapted. Crack and leakage are categorized in 7 patterns. Breakage/spalling and corrosion are also grouped into 3 patterns. Patterned defects or damages are fed back in design, construction, and are useful guidelines for maintenance stage in future.

Characteristics of Flexuarl-Shear Behavior of Beam Using Demonstrated CFRP Rod (국내 시범 생산 CFRP rod를 적용한 보 부재의 휨-전단 특성)

  • Choi, So-Yoeng;Kim, Il-Sun;Choi, Myoung-Sung;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.86-94
    • /
    • 2022
  • Replacement of FRP rod as steel reinforcement has been attracted significantly to prevent the degradation of the concrete structure due to corrosion. So, the technology development to extend the structure's service life by improving FRP properties has been proceeded worldwide. Accordingly, it is necessary to develop Korea's CFRP rod and CFRP grid, including the manufacturing techniques to improve the properties of high-strength and high-stiffness. Moreover, the research should be conducted to evaluate the structural behavior of the beams using the CFRP rod or grid. This study investigates the flexural and shear behavior of reinforced concrete beam using demonstrated CFRP rod as reinforcement according to the reinforcement ratio and shear span to depth ratio. From the results, when the reinforcement ratio is out of a specific range, it is seemed that the effect on performance improvement of the beam using CFRP rod is cancelled or not significant. Meanwhile, when the CFRP rod was used as reinforcement, the possibility of shear failure occurred, even steel stirrups were installed in the beam with CFRP rod as tensile reinforcement according to the Korean Design Standard. Therefore, when the CFRP rod is used as tensile reinforcement in a beam, it should be prepared that a specific limitation of reinforcement ratio and an investigation against shear failure. Also, the ductility of the beam using the CFRP rod is determined by the deformation energy evaluation method. So, the ductility should be investigated by applying the deformation energy evaluation method that reflects the structural behavior of the beam.

Characteristics of Fluoride-based Anti-stain Chemicals Made from industrial By-product (I) - Anti-mold Effectiveness, Iron Corrosivity and Hygroscopicity - (산업 부산물을 이용하여 제조한 플루오르화합물계 목재 방미제의 특성 (I) - 목재 방미효력 및 철부식성과 흡습성 -)

  • Lee, Jong-Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.73-81
    • /
    • 2004
  • To develope of the inexpensive anti-stain chemicals, it was conducted to investigate the inhibitory effectiveness of mycelial growth and anti-mold effectiveness against test fungi causing surface mold of wood, iron corrosivity and hygroscopicity of six fluoride-based chemicals made from industrial by- product.Among the six chemicals. RNF-3 and RNF-4 were the most effective with respect to a mycelial growth control and anti-mold effectiveness. For the wood treatment with these chemicals, the optimum concentration was about 2% and there was no difference in the effectiveness of chemicals between wood species. The wood treated with synthesized chemicals showed a relatively high iron corrosion rate for corrosive F component whereas, in the treatment with RNF-3 and RNF-4, there was no difference from the untreated wood when the concentration was less than 2%. The hygroscopic property of wood was not effected by treatment of these chemicals. To prove the feasibility for practical using of RNF-3 and RNF-4 chemicals, it is necessary to test of anti-mold effectiveness in the sawmill by field test.

Durability Properties of Ultra Rapid Hardening Mortar Produced with Alumina-based Binder for Repairing Sewage Treatment Pipes (하수관거 보수용 알루미나계 결합재 초속경 모르타르의 내구 특성)

  • Eun-Ho, Kim;Byung-Jae, Lee;Sun-Mok, Lee;Yun-Yong, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.482-488
    • /
    • 2022
  • In this study, the durability of ultra rapid hardening mortar for sewage pipe was evaluated by type of mortar binder. As a result of analyzing the internal structure for each type of mortar, it was confirmed that Al2(OH)3 was generated in the internal structure of the CAC-based mortar, and its corrosion resistance was superior to that of other types of mortar. As a result of the compressive strength test, OPC had the tsmallest strength, followed by CAC100 > CAC100P > CAC80. This trend was similar to the previous study results. Chloride ion penetration resistance and freeze-thaw test showed similar trends. That is, CAC and C12A7 were better than OPC, and CSA was worse than OPC. This is mostly beacuse of cracks caused by expansion of CSA-based mortar. CAC100P mix showed the best chemical resistance. It is thought that this is because the alumina gel formed inside the mortar and the polymer combine to make the internal structure more dense.

Evaluation of Chloride Extraction under Electrochemical Chloride Extraction (전기화학적 염화물 추출법에 따른 염소이온 제거 성능 평가)

  • Jiseok, Kim;Ki-Yong, Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.553-557
    • /
    • 2022
  • The present study evaluate the chloride extracion under electrochemical chloride extraction method. Chloride was penetrated into the concrete from external reservoir using a 4M NaCl solution, and an electrochemical chloride extraction method was applied after the curing period of 1 year. The current density was constantly kept 1000 mA/m2 for coulostatic application with the variation in potential difference. The duration of the ECE treatment was 2, 4, 8 weeks, respectively. The residual chloride concentration at all depths decreased, and the chloride concentration decreased as the application period increased. After the application period of 8 weeks, 62.9 to 77.6 % of chloride extracted in the total chloride profile, and 77.7 to 99.5 % of chloride extracted in the free chloride profile. In particular, the concentration of free chloride at a depth of 7 mm or more from the concrete surface was 0.01 % or less by cement. In addition, it was confirmed that the bound chloride could be extracted by the electrochemical chloride extraction.

Magnesium Sulfate Resistance of Geopolymer Incorporating Evaporated Rice Husk Powder (증해추출 왕겨분말을 혼입한 지오폴리머의 황산마그네슘 저항성에 관한 연구)

  • Cho, Seung-Bi;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.663-672
    • /
    • 2022
  • The purpose of this study is to evaluate the magnesium sulfate resistance of a geopolymer mixed with rice husk powder. General concrete, silica fume mixed concrete, and binary blended geopolymer were selected as comparison targets to confirm the magnesium sulfate resistance, and sulfate deterioration was calculated using the compressive strengths with ages. In addition, the weight change rate and the relative dynamic coefficient of the geopolymer were comparatively analyzed, and the degree of etteringite formation was confirmed using X-ray diffraction analysis. the experiment, the geopolymer mixed with 10% rice husk powder showed 10.8% higher compressive strength than concrete with silica fume when submerged for 56 days. Also, the geopolymer mixed with rice husk powder showed a small weight change rate of 0.9 to 1.45%. composition after immersion in magnesium sulfate through X-ray diffraction analysis, it was observed that a small amount of ettringite was dispersed in the geopolymer containing rice husk powder. Thus, there is a high correlation with the corrosion resistance of magnesium sulfate

A Review of the Deterioration and Damage of the Top Flange of the Highway PSC Box Girder Bridge based on the Condition Assessment Results (상태평가 결과 기반 고속도로 PSC Box 거더교 상부플랜지 열화·손상 실태 고찰)

  • Ku, Young-Ho;Han, Sang-Mook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.23-32
    • /
    • 2022
  • Although PSCB girder bridges account for 4% of the bridges in use on highways, they do not account for much, but 98% of PSCB girder bridges are 1st type and 2nd type of bridge. Also, the total length of the PSCB girder bridge is 16% (192km) of the total length of the highway bridge. Thus, the PSCB girder bridge can be one of the bridge types where maintenance is important. In order to analyze the damage types of PSCB girder bridges, a detailed analysis was conducted by selecting 62 places (477 spans) precision safety diagnosis reports considering ratio of the construction method and snow removal environment exposure class. Analysis of report and a field investigation was conducted, and as a result, most of the causes of deterioration damage were caused by rainwater (salt water) flowing into the bridge pavement soaking in between the top flange and the interface. After concrete slab deteriorate occurred then bridge pavement cracking and breaking increased and exfoliation of concrete occurred by corrosion and expansion of the reinforcing bars occurred. In addition, the cause of cracks in the longitudinal direction on the bottom of the top flange is considered to be cracks caused by restrained drying shrinkage. In conclusion, for reasonable maintenance considering the characteristics of PSCB girder bridges, it should be suggested in the design aspect that restrained drying shrinkage crack on top flange. Also, it is believed that differentiated maintenance method should be proposed according to snow removal environment exposure class.

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.

A Study on the Frictional Characteristics of Fiber Reinforced Composites under Corrosive Environment (부식 환경 하에서의 섬유강화복합재료의 마찰 및 마모 특성 연구)

  • Choong-Yong Park;Dong-Hyun Park;Soo-Jeong Park;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.37-41
    • /
    • 2023
  • The treated water inside the ballast electrolytic cell creates a highly alkaline atmosphere due to hydroxide generated at the DSA(Dimension Stable Anode) electrode during electrolysis. In this study, a composite material that can replace the weakness of the PE-coated steel pipe used in the existing ballast pipe was prepared. The test samples are BRE(Basalt fiber reinforced epoxy), BRP(Basalt fiber reinforced unsaturated polyester), GRE(Glass fiber reinforced epoxy), and GRP(Glass fiber reinforced unsaturated polyester). And then it was immersed in NaOH for 720 hours. The friction test of each specimen was conducted. The Friction coefficient analysis according to material friction depth and interfacial adhesion behavior between resin and fiber were analyzed. As a result, the mechanism of interfacial separation between resin and fiber could be analyzed. In the case of the unsaturated polyester resin with low interfacial bonding strength the longer the immersion time in the alkaline solution, the faster the internal deterioration caused by the deterioration that started from the surface, resulting in a decrease in the friction coefficient. It is hoped that this study will help to understand the degradation behavior of composite materials immersed in various chemical solutions such as NaOH, acid, and sodium hypochlorite in the future.

Analysis of Fiber Damage data Due to Physical and Chemical Causes (물리적, 화학적 원인에 의한 섬유 손상 데이터 분석)

  • Ji-Young, Seo;You, Jae-Doo;Dong-Min, Lee;Cho-Won, Park;Young-Wook, Woon
    • Journal of Industrial Convergence
    • /
    • v.21 no.2
    • /
    • pp.93-101
    • /
    • 2023
  • In this study, the physical and chemical fiber damage caused by knives, scissors, and chemicals was analyzed and used as technical data to determine the cause of the damage. Using 4 types of knives, 5 types of scissors and 4 types of chemicals(Sulfuric Acid, Hydrochloric Acid, Sodium Hydroxide, Potassium Hydroxide) physical and chemical to Cotton, Wool, Polyester, Rayon, T/C (Polyester 50%, Cotton 50%), T/W (Polyester 50%, Wool 50%) Damages were created and analyzed for damage caused by tools and chemicals. For penetrating damage caused by knives and scissors, 'V' type damage was generally seen when the blade part was penetrated, 'T', 'ㅁ', ''C' type damage was found, and in the case of scissors, 'Y' ' This type of damage was common. Fiber damage caused by chemicals showed various damage such as remanent trace, corrosion, degraded, contracting, and color changes. Physical damage of fibers showed differences in characteristics according to the shape characteristics of tools, and chemical damage showed differences in characteristics according to chemicals and types of fibers.