• 제목/요약/키워드: COPH

검색결과 12건 처리시간 0.018초

지중열원 열펌프 시스템의 난방성능 해석 (A Study on the Heating Performance of Ground Source Heat Pump System)

  • 우정선;김대기;이세균
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1175-1182
    • /
    • 2004
  • Installations of vertical boreholes for the ground source heat pump system are expensive to install. One way to reduce the initial cost is to increase the specific heat extraction rate of borehole system. However, as the specific heat extraction rate increases the temperature of borehole fluid decreases with the resultant lower Coefficient Of Performance in Heating(COPH) of heat pump system. The purpose of this study is to provide the basic informations about the performance of heat pump system with the specific heat extraction rate and soil thermal properties such as thermal conductivity and temperature. It is shown that the specific heat extraction rate is the most important parameter for the ground source heat pump system. To obtain the reasonable COPH value (COPH > 3) the heat extraction rate should be about 25 W/m or less. Accurate measurements of soil thermal properties are also very important to design the system properly. The effects of borehole thermal resistances are also examined in this study.

공기-물 열펌프 시스템의 비가역손실 해석 (Irreversibility Analysis of an Air-to-Water Heat Pump System)

  • 이세균;우정선;노정근
    • 한국태양에너지학회 논문집
    • /
    • 제26권3호
    • /
    • pp.71-78
    • /
    • 2006
  • Thermodynamic irreversibility analysis of an air-to-water heat pump system is analyzed in this study. This analysis shows the distribution of irreversibilities(true losses in thermodynamic sense) through the system components and informs us of a potential improvements with the irreversibility factor decreases. The results show that the largest irreversibilities occur in the motor-compressor unit. The remaining irreversibilities are distributed relatively uniformly through the other parts including utilization system. The increase of performance can be attained through either the improvement of adiabatic efficiency of motor-compressor unit(${\eta}_{mc}$) or the reduction of temperature difference(${\Delta}T$). With the decrease of utilization temperature($T_u$) COPH also increases but the exergetic efficiency decreases. The increase of COPH of about 0.05 can be accomplished with 1K decrease of ${\Delta}T$ or $T_u$.

지중열원 열펌프시스템의 성능해석 (A Study on the Performance of Ground Source Heat Pump System)

  • 이세균;우정선;노정근
    • 한국태양에너지학회 논문집
    • /
    • 제25권4호
    • /
    • pp.69-76
    • /
    • 2005
  • The performance of water-to-water heat pump system coupled with the ground source vertical heat exchanger is presented in this paper. The CAP program of Florida Heat Pump Co. is used to predict the heat pump performances while the EED program calculates the borehole fluid temperature. It is shown that COPH increases with decreasing the temperature of output water for the operation of heating mode and COPR increases with increasing temperature of output water for the operation of cooling mode. The value of specific heat extraction rate must be moderate to insure the reasonable installation cost of borehole system. With $1^{\circ}C$decrease of $T_{wo}$ the average COPH increase is estimated as about $0.06/^{\circ}C$(for $T_{wo}\;=\;45{\sim}60^{\circ}C$ range) while with $1^{\circ}C$ increase of $T_{wo}$ the estimation of COPR increase is about $0.13/^{\circ}C$(for $T_{wo}\;= \;5{\sim}11^{\circ}C$ range) at the specific heat extraction rate of 30W/m.

물-물 열펌프시스템에 관한 열역학 제1 및 제2 법칙 해석 (First and Second Law Analysis of Water-to-Water Heat Pump System)

  • 이세균;우정선;노정근
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.87-95
    • /
    • 2007
  • Thermodynamic analysis of water-to-water heat pump system based on the first and second law of thermodynamics is carried out in this study. This analysis shows the distribution of irreversibilities throughout the system components and informs us of a potential improvements with the temperature condition changes. Source water temperature($T_A$), utilization water temperature($T_D$) and temperature differences (${\Delta}T_{AB}$, ${\Delta}T_{CD}$) are important factors to affect system performances such as component irreversibilities, exergetic efficiency and COPH. Advantages and disadvantages with these factors are discussed. Second law optimization phenomena with $T_A$ and ${\Delta}T_{AB}$ are also indicated.

강변여과수를 이용한 온실난방기술 개발 (Greenhouse Heating Technology Development by using Riverbank Filtration Water)

  • 문종필;이성현;권진경;강연구;유영선;이수장
    • 한국농공학회논문집
    • /
    • 제53권6호
    • /
    • pp.145-152
    • /
    • 2011
  • In order to heat greenhouse nearby river channel, riverbank filtration water source heat pump was developed for getting plenty of heat flux from geothermal energy. Recharging well, thermal storage tank with separating insulation plate and filtering tank for eliminating iron, manganese were mainly developed for making the coefficient of performance (COP) of heat pump higher. Heating system using riverbank filtration water source heat pump was installed at a paprika greenhouse in the Jinju region where a single fold of vinyl cover and 2 layers of horizontal thermal curtain were installed as a part of temperature keeping and heat insulation with a greenhouse area of 3,185 $m^2$. 320,000 kcal/h was supplied for performing a site application tests. A greenhouse heating test was performed from Feb. 1, 2011 to Apr. 30, 2011. As the result of that, COPh of the heat pump was measured in the range of 4.0~4.5, while COPS of the system was represented as 2.9~3.3. COP measured of the heat pump was very good and well responded to indoor heating temperature of the environment control system of a greenhouse.

Substituents Effect on Aziridine Chemistry: N-Inversion Energy, Reactivity and Regioselectivity of Nucleophilic Ring-opening

  • Park, Gyoo-Soon;Kim, Seok-Chan;Kang, Han-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권9호
    • /
    • pp.1339-1343
    • /
    • 2005
  • The N-inversion energies and nucleophilic ring-opening reactions of N-substituted aziridine compounds are investigated using B3LYP/6-31+$G^*$ methods, where substituents (R) on the nitrogen atom has been H (1), Me (2), Ph (3), Bn (4), CHMePh (5), $CO_2Me$ (6), COPh (7) and $SO_2Ph$ (8). The N-inversion energy with X group are decreased as the following order: R = CHMePh (17.06 kcal/mol) $\gt$ Me (16.97) $\gt$ Bn (16.70) $\gt$ H (16.64) $\gt$ $SO_2Ph$ (12.18) $\gt$ Ph (8.91) $\gt$ COPh (5.75) $\gt$ $CO_2Me$ (5.48). For reactivity of the ring opening toward cyanide ion, the aziridine 6 (R=$CO_2Me$) is shown to be the most reactive one. During the ring opening of aziridine 6 by CN$^{\ominus}$, the torsional OCNC angle becomes near to $180^{\circ}$, where the geometry allows for the effective incorporation of electrons of the nitrogen atom to the C=O bond. It would be a possible driving force for nucleophilic ring opening reaction as well as decreasing the N-inversion energy barrier. Regarding to the regioselectivity, the orientation of nucleophile in ring opening reaction appears to be different in the case of 9 and 10. The results are discussed in terms of steric/electronic effect of the $C_2$-substituents.

Second Law Optimization of Water-to-Water Heat Pump System

  • Kim, Kyu-Hyung;Woo, Joung-Son;Lee, Se-Kyoun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.122-128
    • /
    • 2003
  • This paper presents a thermodynamic analysis of heat pump system using water as a heat source and heat sink. The primary object in this study is the optimization of exergetic efficiency. Two different systems, 2-stream and 1-stream system, are analyzed in detail. Mass flow ratio (the ratio of mass flow rate of water through evaporator to that through condenser) is identified as the most important parameter to be optimized. It is shown that there exists an optimum mass flow ratio to maximize exergetic efficiency. The variation of optimum exergetic efficiency of 2-stream system is quite small and the value lies between 0.2∼0.23 for the range of investigation in this study. However, far better performance can be obtained from 1-stream system. This means considerable irreversibilities are generated through condenser of the 2-stream system. The effects of adiabatic efficiency of compressor-motor unit on the overall system performance are also examined in the analysis.

공동주택 적용 지열 및 우수열원을 이용한 히트펌프의 실험적 연구 (A Experimental Study on the Ground Source and Rain Water Heat Source Heat Pump System in Apartment)

  • 고건혁;김지영;강은철;이의준;현명택
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.833-837
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. In this study, the operating performance of rain water and ground source heat pump system (RW-GSHP) was compared with GSHP during the heating test. Leaving load temperature(LLT) was $50^{\circ}C$, $53^{\circ}C$, $56^{\circ}C$, respectively and rain water tank temperature(RWT) was $13^{\circ}C$, $15^{\circ}C$, $17^{\circ}C$ in this heating test. The experiment was focused on comparison of the system operating performance depending on leaving load temperature (LLT) and rain water tank temperature (RWT). The results showed that rain water and ground source heat pump system (RW-GSHP) was higher heating performance and COPh than those of GSHP.

  • PDF

재열기를 사용한 고성능 VI 사이클 열펌프의 난방 성능 특성에 관한 연구 (A Study on the Characteristics of Heating Performance of High-Performance Heat Pump with VI cycle using Re-Heater)

  • 이진국;최광환
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.69-75
    • /
    • 2015
  • In this study, the characteristics of heating performance of a high-performance air-cooled heat pump with vapor-injection(VI) cycle using re-heater was investigated experimentally. Devices used in the experiment is consist of a VI compressor, condenser, oil separator, refrigerant (economizer outlet refrigerant) re-heater, economizer, evaporator. And R410A was used as a working fluid. The experiment was conducted with two cycles(cycles A and B) for investigating heating performance. In case of cycle B, heat exchange was conducted by re-heater between outlet refrigerant of compressor and suction refrigerant of the VI system(Fig.1, re-heater). But the re-heater was not used in case of cycle A. As a result of this experiment, discharge temperature of refrigerator in compressor was shown higher value, when the cycle B was conducted, because of the heat exchange between suction refrigerant of VI cycle and outlet refrigerant of compressor in the re-heater than cycle A that was not use re-heater. it means that liquid hammer and the decrement of heating performance can be decreased by using re-heater. Also, Heating coefficient of performance(COPh) was shown about 2.98 in Cycle B which was 4% higher than Cycle A and from these results, It was confirmed that the improvement of the heating performance of heat pump with VI cycle can be achieved by applying re-heater.

화력발전소의 온배수를 열원으로 이용하는 시설원예 난방용 히트펌프 시스템의 열교환기 설계기준 설정 (Heat Exchanger Design of a Heat Pump System Using the Heated Effluent of Thermal Power Generation Plant as a Heat Source for Greenhouse Heating)

  • 유영선;강연구;장재경;김영화;김종구;강금춘
    • 생물환경조절학회지
    • /
    • 제21권4호
    • /
    • pp.372-378
    • /
    • 2012
  • 본 연구에서는 화력발전소에서 온배수의 형태로 배출되는 폐열을 히트펌프의 열원으로 이용하여 온실의 난방에 활용할 수 있는 히트펌프 시스템을 설계 제작하였으며, 난방 성능을 분석하여 PE 파이프 열교환기의 설계기준을 제시하고자 하였다. PE 파이프 열교환기의 내경은 20mm, 두께는 2mm였으며, Roll의 직경은 1,000mm로 하였다. 연구결과 PE파이프 열교환기의 적정 길이는 1.0RT당 75m로 설계하는 것이 바람직할 것으로 판단되었으며, 이때 히트펌프시스템의 난방성능계수(COPh)는 3.8로 나타났다.