• Title/Summary/Keyword: COP (Coefficient of performance)

Search Result 227, Processing Time 0.027 seconds

Performance Analysis of Hybrid Heat Pump System of the Air-to-Air/Air-to-Water with the Ambient Temperature (외기온 변화에 따른 공기-공기/공기-물 형태로 된 복합형 열펌프 시스템의 성능 특성 분석)

  • 송현갑
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.273-278
    • /
    • 2000
  • The hybrid heat pump system of the air to air and / or air to water was composed and its COP was analyzed with the ambient temperature on the opened and closed loop system respectively. The results be indicated by the equation(7) that the COP(Coefficient of Performance) of air-source(air to air and / or air-water) heat pump is effected with the ambient air temperature and AVACTHE.(Automatic Variable Area Capillary Type Heat Exchanger) 2. The COP of air-to-water heat pump without AVACTHE decreased in accordance with the ambient temperature decrease, however in case of the heat pump with AVACTHE the COP was maintained at 2.8∼3.0 level when the ambient temperature decrease from -$5^{\circ}C$ to $-11^{\circ}C$. 3. The COP of the air-to-water heat pump operated on the open loop was higher 40∼58% than that of the heat pump operated on the close loop. 4. The lower ambient temperature air effect on the COP of the air-to-air heat pump operated on the semi closed loop could be controlled using the AVACTHE, and at the high ambient air temperature the COP increased using the Bypass circuit.

  • PDF

Analysis on Cooling and Heating Performance of Water-to-Water Heat Pump System for Water Source Temperature (물-물 수온차 히트펌프 시스템의 원수온도에 따른 성능 특성 분석)

  • Park, Tae Jin;Cho, Yong;Park, Jin-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.169.2-169.2
    • /
    • 2010
  • The research assesses the performance of the water-to-water heat pump system installed in Cheongju water treatment plant for cooling and heating ventilation. In summer season monthly averaged COP is ranged from 3.85 to 4.56 according to the water source temperature, and the performance is increased as the raw water temperature is dropped. While, heating performance is increased for the high temperature water source, and the monthly averaged COP is changed from 2.92 to 3.82. The correlation of the water source temperature and the heat pump performance shows a linear tendency by the simple regression of average data. In heating, the COP of heat pump system linearly rises according to the water source temperature. In comparison, the COP in cooling linearly reduces as the raw water temperature is raised. The goodness of fit at the simple regression shows the coefficient of determination 82% in cooling, 46% in heating. The electric cost of water-to-water heat pump is reduced by 40% compared to that of air source heat pump.

  • PDF

Heating Performance Analysis of Building Integrated Geothermal System (건물일체형 지열히트펌프시스템의 난방 성능 분석)

  • Jin, Shangzhen;Lee, Jin-Uk;Kim, Tae-Yeon;Leigh, Seung-Bok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.206-210
    • /
    • 2012
  • Ground source heat pump is a central heating and cooling system that pumps heat to or from the ground. Building Integrated Geothermal system used in this experiment is one of the Ground Source Heat Pump Systems which utilize energy pile. The purpose of this study is to evaluate heating performance of the system. The building is a low-energy experiment apartment in Yonsei University Songdo Campus and the subject is one of the energy reduced houses in this apartment. In the experiment, indoor temperature, outdoor temperature and the inlet and outlet temperature of ground heat exchanger and subject model, were measured. Then the heat pump's Coefficient of performance(COP) of the heat pump was calculated. As a result, the COP of heat pump is 4-5. Although the depth of the ground heat exchanger in this experiment is shallower than usual heat exchanger, the result of heating performance of this system was good as well.

  • PDF

Cooling and Heating Performance Under the Actual Operating Condition of a Ground Source Heat Pump System in a School Building (학교 건물에 설치된 지열원 열펌프 시스템의 실사용을 통한 냉난방성능 연구)

  • Kim, Eui-Young;Jeong, Young-Man;Song, Jae-Do;Lee, Jae-Keun;Kim, In-Kyu;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.586-589
    • /
    • 2009
  • This paper presents the performance of a water-to-refrigerant type ground source heat pump (GSHP) system installed in a school building in Korea. For analyzing the performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the input power of the GSHP system. The average cooling coefficient of performance (COP) of the heat pump was found to be 8.5 at 60% partial load condition, while the overall system COP was found to be 5.9. The average heating COP of the heat pump was found to be 6.5 at 45% partial load condition, while the overall system COP was found to be 5.0.

  • PDF

Development of cascade refrigeration system using R744 and R404A - Prediction and comparison on maximum COP(Coefficient of Performance) - (R744-R404A용 캐스케이드 냉동시스템 개발에 관한 연구(2) - 최대 성능계수에 관한 예측과 비교 -)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.189-195
    • /
    • 2011
  • In this paper, prediction and comparison on COP(coefficient of performance) of R744-R404A cascade refrigeration system are presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in the R404A high- and R744 low-temperature cycle, respectively. The main results were summarized as follows : The prediction for performance of R744-R404A cascade refrigeration system have been proposed through multiple regression analysis and compared with other researcher's correlations. As a result, prediction proposed in the study shows disagreement with existing equations. Therefore, it is necessary to propose the more accurate correlation predicting the COP of R744-R404A cascade refrigeration system through an addition experiments.

Performance analysis of $CO_{2}$ refrigeration cycle with two-phase ejector (2상류이젝터를 이용하는 $CO_{2}$ 냉동사이클의 성능해석)

  • Lee Yoon-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.946-952
    • /
    • 2005
  • The $CO_{2}$ refrigeration cycle is expected to reduce the compressor work and increase the COP by applying two-phase ejector as a device for the recovery of dissipated expansion energy. In this study, the performance of the cycle was simulated and effects of the ejector shapes on the performance of the $CO_{2}$ refrigeration cycle were investigated. The following results were obtained through the cycle simulation. The COP of the $CO_{2}$ refrigeration cycle with two-phase ejector flow which expansion is occured in the isentropic manner is increased by a maximum of 24 $\%$ than the basic cycle with expansion valve If the velocity nonequilibrium in the mixing process is assumed the COP of the cycle is increased with the increase of the length and the decrease of the section area of the mixing tube. The best cycle performance is obtained when the divergent angle of diffuser is 7.

Research on the heating performance of SCW heat pump system for residential house (주거용 건물의 지하수 이용 지열 히트펌프 시스템의 난방성능 특성에 관한 연구)

  • Kim, Ju-Hwa;Kim, Ju-Young;Hong, Won-Hwa;Ahn, Chang-Hwan
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.431-435
    • /
    • 2008
  • Geothermal heat pump system using standing column wells as their ground heat exchanger can be used as a highly efficient source of heating and cooling in massive buildings. But there is no case of a small scale residential house. So this study estimated heating coefficient of performance(COP) of geothermal heat pump system using standing column well type which is excellent in heat recovery in the residential house. As a result of analysis, The COP of heat pump is over average 6 and is excellent. And in consequence of making a comparative study according to the bleeding, the cop is higher in the case of bleeding. Therefore, bleeding affects the performance of the system. This study has shown performance result that stands on actual data. Therefore, this study provides ground data that needs when a low capacity of system designs for a residence with confidence elevation.

  • PDF

Experimental Study on Cooling Performance of A/C applied Fin-tube and PF Heat Exchangers (핀-관, 평행류 열교환기를 적용한 공조기의 냉방성능 실험연구)

  • Kwon, Young-Chul;Park, Yoon-Chang;Kwon, Jeong-Tae;Park, Gyung-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1789-1794
    • /
    • 2009
  • In the present study, the cooling performance characteristics on environment changes of A/C applied fin-tube and PF heat exchangers were experimentally investigated. Capacity and COP on an air velocity, an indoor/outdoor temperature and an indoor/outdoor relative humidity were obtained. Fin types of PF heat exchanger were a triangler and squarer form. The experimental data for the three kinds of heat exchangers were measured using the air-enthalpy calorimeter. Performance of PF A/C was more excellent than that of a fin-tube A/C. Also, the performance of PF-2 A/C with the squarer fin was more excellent than that of PF-1 A/C with the triangler fin. As the air velocity, the indoor temperature and the indoor relative humidity increase, capacity and COP increase. And as outdoor temperature increases, capacity and COP decrease. But, the performance change on the outdoor relative humidity was insignificant.

이젝터가 부착된 냉동시스템의 성능실험

  • 이원희;김윤조;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.993-1001
    • /
    • 2001
  • Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out. In this study, a hydrofluorocarbon (HFC) refrigerant R134a is chosen as a working fluid. The condenser and two-evaporators are made as concentric double pipes with counter-flow type heat exchangers. Experiments were performed by changing the inlet and outlet temperatures of secondary fluids entering condenser, high-pressure evaporator and low-pressure evaporator at test conditions keeping a constant compressor speed. When the external conditions (inlet temperatures of secondary fluid entering condenser and one evaporator) are fixed, results show that coefficient of performance (COP) increases as the inlet temperature of the other evaporator rises. It is also shown that the COP decreases as the mass flaw rate ratio of suction fluid to motive fluid increases. The COP of dual-evaporator refrigeration system with an ejector is superior to that of a single-evaporator vapor compression system by 3 to 6%.

  • PDF

An Experimental Study of Adsorption Chiller using Silica gel-Water (실리카겔-물계 흡착식 냉동기에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Yun, Jae-Ho;Kim, Joung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1119-1124
    • /
    • 2006
  • The objectives of this paper are to investigate the performance of silica gel-water adsorption refrigeration system with heat recovery process from the system experiment. This system can be driven by waste heat at near ambient temperature from $60^{\circ}C$ to $90^{\circ}C$. The cooling capacity and coefficient of performance(COP) were measured from various experimental conditions. An experimental results revealed the influence of operating temperatures(hot, cooling and chilled water), water flow rates, and adsorption-desorption cycle times on cooling capacity and COP. Under the standard conditions of $80^{\circ}C$ hot water, $25^{\circ}C$ cooling water, $14^{\circ}C$ chilled water inlet temperatures and 420sec cycle time, a cooling capacity of 1.14kW and a COP for cooling of 0.55 can be achieved.

  • PDF