• 제목/요약/키워드: COP(Coefficient of Performance)

검색결과 225건 처리시간 0.029초

2차 냉매로 천연냉매 R744를 사용하는 냉동시스템의 성능 특성 (Performance Characteristics of Refrigeration System Using R744 as a Secondary Refrigerant)

  • 이문빈;조환;윤정인;최인수;손창효
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.17-22
    • /
    • 2014
  • In this paper, the performance characteristics of R404 indirect refrigeration system using R744 as a secondary refrigerant were investigated experimentally to obtain a optimum design data for this system. First, for the constant experimental conditions, the COP of R404A indirect refrigeration system using R744 as secondary refrigerants decreases with respect to the increases in R404A condensation temperature and temperature difference in R744 cooler. And, the COP of indirect refrigeration system using R744 as secondary refrigerants decreases slightly with decreasing the mass flowrate of R744.

열전모듈을 이용한 자동차용 1 kW급 보조 냉난방 시스템의 성능에 관한 실험적 연구 (An Experimental Study on the Supplemental Cooling and Heating Performance Using 1 kW Thermoelectric Module for Vehicle)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권5호
    • /
    • pp.224-230
    • /
    • 2014
  • The purpose of this paper is to investigate the performance of supplemental cooling and heating system equipped with the 1 kW thermoelectric module. The system consist of 96 thermoelectric modules, heat sink with louver fin and water cooling jacket which is attached on the hot side of the thermoelectric module. The cooling and heating performance test of the thermoelectric system is conducted with various conditions, such as intake voltage, air inlet temperature, air flow volume, water inlet temperature and water flow rate at calorimeter chamber in consideration of environmental conditions in realistic vehicle drive. The experimental results of a thermoelectric system shows that the cooling capacity and COP is 1.03 kW, and 1.0, and heating capacity and COP is 1.53 kW, and 1.5 respectively.

실내 부하 변동에 따른 탄화수소계 냉매를 이용한 히트펌프 성능에 관한 실험적 연구 (An Experimental Study on Performance of Heat Pump System Using Hydrocarbon Refrigerants by Changing Indoor Load)

  • 김재돌;성광훈;정석권;윤정인;이호생
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.204-210
    • /
    • 2006
  • This study presents heat pump system characteristics using hydrocarbon refrigerants as alternative refrigerant for R-22 with respect to the variation of indoor load. Pure R-22 and R-290. R-600a, R-1270 were considered as working fluids The experimental apparatus was constructed to investigate the performance of heat pump using the air as a heat source. The performance were calculated based on compression shaft work. refrigeration capacity. pressure ratio, discharge temperature and COP. The experimental results show that the COP and refrigeration capacity of hydrocarbon refrigerants were higher than that of R-22. Through the above. hydrocarbon refrigerants are good alternatives in the heat pump system for R-22.

흡수압축 하이브리드 히트펌프 사이클의 성능특성 (Performance Characteristic of the Compression-Absorption Hybrid Heat Pump Cycles)

  • 윤정인;권오경;양영명
    • 한국가스학회지
    • /
    • 제3권1호
    • /
    • pp.14-20
    • /
    • 1999
  • [ $H_2O/LiBr$ ]계 흡수식 사이클에 압축기를 조합한 흡수압축사이클을 도입하여 증기를 단열압축시켜 그 증기의 응축열을 재생열로 이용하는 사이클에 대해서 시뮬레이션을 통하여 횹수압축사이클의 특성을 밝힌 연구이다. 기존의 흡수사이클에 압축기를 도입함에 따라 고효율 사이클을 실현할 수 있음을 제시하였으며, 흡수$\cdot$압축사이클의 구체적인 가능성을 제시하였다. 재생기에서 발생한 냉매증기를 단열압축시킨 TYPE 2는 단열압축 증기의 응축열만으로는 재생이 어려우므로 외부로부터 별도의 열량을 투입해야 하며 투입하는 외부열량에 폐열이나 2차 에너지를 이용할 수 있다면 높은 COP를 얻을 수 있어 실현가능성이 높다.

  • PDF

혼합냉매를 사용한 열펌프 시스템의 성능과 열전달 특성 (Performance and Heat Transfer Characteristics of Heat Pump System Using Refrigerant Mixtures)

  • 김동섭;신지영;노승탁
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.360-369
    • /
    • 1992
  • A heat pump system is constructed to evaluate its performance and heat transfer characteristics with mixtures of R22/R142b as working fluids. The heat transfer in the evaporator and the overall performance are measured and analyzed in terms of the compositions and relevant variables. Possibility of capacity modulation by changing composition is observed without degradation of heat transfer coefficients and coefficient of performance. The cooling capacity is varied continuously within 200 percent based on minimum capacity at constant compressor speed. For similar cooling capacity, COP is improved by mixing two refrigerants and shows maximum value at 60% mass fraction of R22. Average heat transfer coefficients of mixtures decrease in comparison with pure refrigerants at similar cooling capacity and mass flow rate. However, the overall heat transfer coefficients decrease moderately. A cycle simulation is performed in order to manifest the advantages of using refrigerant mixtures, considering experimentally observed heat transfer characteristics.

  • PDF

자동차 공조용 핀형 열교환기의 성능특성에 관한 연구 (A Study on the Performance Characteristics of Fin-type Heat Exchanger for the Automobile Air-Conditioners)

  • 홍경한;전상신;이승재;박찬수;권일욱;김재열;김병철;하옥남
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.100-105
    • /
    • 2004
  • Fin-tube type(Fin-type) heat exchanger has been tested in order to replace the heat exchanger of parallel flow type(P.F -type) which is now widly used in automobile air conditioning system The following conclusions are drawn by the comparison of the characteristics of the heat exchangers. Evaporator and condenser capacities and COP(Coefficience of performance) were varied as with the compressor speed, outdoor air temperature and air flow rate changed, which much influenced on the characteristics of the air conditioning system Evaporator and condenser capacities were increased with increasing compressor speed and outdoor air temperature. Evaporator and condenser pressures of Fin-type were decreased by 7% and 5% respectively compared with those of P.F-type. The COP of Fin-type was decreased with increasing outdoor air temperature and compressor speed. The COP of P.F-type was decreased by 14% compared with that of Fin-type.

온실난방을 위한 히트펌프의 성능에 관한 연구 (A Study on the Greenhouse Heating Performance of Heat Pump System)

  • 윤용철;서원명;이석건
    • 한국농공학회지
    • /
    • 제40권3호
    • /
    • pp.94-102
    • /
    • 1998
  • This experiment was carried out to study on the effect of greenhouse heating by water-to-water heat pump system employing heating water tank(ground water) as the heat source. Followings are the results obtained from this study ; 1. The heat amount absorbed from evaporator and the heat amount rejected from condenser were approximately 9, 000~ 12, 000kcal/h and 13, 000~ 17, OOOkcal/h, respectively. 2. The heat efficiencies of evaporator and condenser used in this experiment were approximately 79% and 83%, respectively. 3. The maximum heating load estimated for the experimental greenhouse was about 18, 000 ~ 25, OOOkcal/h, which was found to be about 28 ~ 32% higher than the heating capacity of the heat pump system adopted for this experiment. 4. The coefficients of performance(COP) for the heat pump and the total heat pump system were approximately 2.9~3.5 and 1.5~2.4, respectively. 5. The coefficient of performance(COP) calculated from the Mollier Diagram was about 3.2 ~ 3.4, which was reasonably close to the COP estimated on the basis of measured values. 6. The temperature of experimental greenhouse heated by the heat pump system could be maintained about 12~15 。C higher than that of a control greenhouse.

  • PDF

5 RT 공랭형 $NH_3-H_2O$ 흡수식 냉동기의 발생기 입력 열량과 외기온도 변화에 따른 성능분석 (Performance Analysis of a 5 RT Air-Cooled $NH_3-H_2O$ Absorption Chiller with the Variations of Heat Input and Ambient Temperature)

  • 윤희정;김성수;강용태
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.438-443
    • /
    • 2004
  • The objective of this paper is to study the effects of the input gas flow rate and the ambient temperature variation on the absorption cycle performance. An air-cooled NH$_3$-$H_2O$ absorption chiller is tested in the present study. The nominal cooling capacity of the single effect maching is 17.6 ㎾ (5.0 USRT). The cooling capacity, coefficient of performance, burner efficiency, and each state point are measured with the variations of the heat input and the ambient temperature. It is found that the COP and cooling capacity increase with increasing the generator exit temperature up to a certain temperature and then decrease. It is also found that the COP and the cooling capacity decrease with increasing the ambient temperature. The maximum COP of 0.51 is obtained from the present experiment.

복합열원 히트펌프 최적 제어를 위한 열원에 따른 히트펌프 성능 및 에너지 소요량 패턴 비교 (Comparison of Heat Pump Performance and Energy Consumption Patterns according to Heat Sources for Optimal Control of Multi-Source Heat Pumps)

  • 고유진;박시훈;민준기
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.31-38
    • /
    • 2020
  • The investment in the technology of using a combined heat source is insufficient, which utilizes the advantages of various heat sources to maximize the potential energy and at the same time increases the performance of the heat pump. In this study, as basic data for the development of a high-efficiency hybrid heat pump system that actively connects and uses various heat sources, simulations were conducted for the heat pumps in two cases where geothermal and hydrothermal heat were applied respectively. In May, COP increased by about 27.3% compared to geothermal heat. In February, the COP percentage decrease of hydrothermal heat compared to geothermal heat is -6.9%. In May, total energy consumption can be reduced by 21.1% when hydrothermal is applied compared to geothermal heat. In February, the total energy consumption increases by 3.4%.

복사패널이 적용된 건물일체형 지열원 시스템의 난방성능 분석 (Heating Performance Analysis of Building Integrated Geothermal System With Radiant Floor Heating)

  • 김상진;이진욱;김태연;이승복
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.25-30
    • /
    • 2012
  • Ground source heat pumps(GSHPs) are among the most efficient and comfortable heating and cooling technologies currently available, because they use the earth's natural heat to provide heating, cooling, and often, water heating. And Building Integrated Geothermal System(BIGS) is one of GSHPs which install ground heat exchanger(GHE) in energy pile without borehole to save the investment cost. Therefore, the experiment is to evaluate the heating performance of BIGS in Korea. The experimental results indicate that the average heat pump COP and overall system's COP values are approximately 4.4 and 3.0 in one week. This study shows that the BIGS could be used for heating in Korea.