• Title/Summary/Keyword: COOLING EFFECT

Search Result 2,352, Processing Time 0.037 seconds

Solar photovoltaic according to installation of cooling system (냉각시스템 설치에 따른 태양광 발전)

  • Hong, Seong-Goo;Choi, Hong-Kyoo;Yoo, Hai-Chool;Lee, Chan-Jae;Han, Sang-Kwon;Kim, Tae-Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.189-192
    • /
    • 2008
  • The solar photovoltaic Power generator can get more power with the higher solar radiation quantity. However, if the higher solar radiation quantity on cell becomes high temperature, the efficiency of generate will be reduced. To install cooling system for this kind of device can be the way to solve high temperature problem on cell but another problems after install it such as increasing of solar generated quantity problem, cost to install cooling system and cost to be maintained cooling system weren't discussed to practical use this system. So the present paper described about effect and commercial business possibility of cooling system.

  • PDF

Heat Transfer Characteristics Around a Surface-Mounted Module Cooled by Piezoelectric Fan (압전세라믹 냉각홴에 의한 강제 공랭 모듈 주위의 열전달특성)

  • Park, Sang-Hee;Park, Gyu-Jin;Choi, Seong-Dae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.780-788
    • /
    • 2004
  • This paper reports the fluid flow and heat transfer around a module cooled by forced air flow generated by a piezoelectric(PZT) cooling fan. The fluids are locally accelerated by a flexible PZT fan which deflects inside a fluid transport system of comparatively simple structure mounted on a PCB in a parallel-plate channel(450${\times}$80${\times}$700㎣). Input voltages of 20-100V and a resonance frequency of 23㎐ were used to vibrate the cooling fan. Input power to the module was 4W. The fluid flow around the module was visualized by using PIV system. The temperature distributions around a heated module were visualized by using liquid crystal film(LCF). The cooling effect using a PZT fan was independent of the vent area ratios at the channel inlet and was similar to the forced convection cooling. We found that the flow type was Y-shape and the cooling effect was increased by the wake generated by a piezoelectric cooling fan.

Thermal-flow Analysis of the Cooling System in the Medicated Water Electrolysis Apparatus (냉이온수기 냉각시스템에 관한 열유동 해석)

  • Jeon, Seong-Oh;Lee, Sang-Jun;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2011
  • Medicated water electrolysis apparatus, which electrolyzes water into acidic water and alkaline water, was in the spotlight as becoming known the effect of alkaline water. It is known as good for health as removing active oxygen in the human's body and promoting digestion. But, the customers could not get that desired water temperature because these apparatuses are directly connected with a water pipe. So, the cooling system was developed for controlling the temperature of the alkaline water. One of the typical way is to store water in water tank and control the temperature. But, in this way, storing water can be polluted impurities coming from outside. For protecting this pollution, the cooling system based on indirect heat exchange method through phase change between water and ice was developed. In this study, we have calculated efficiency of the cooling system with phase change by experiment and commercial CFD(Computational Fluid Dynamics) code, ANSYS CFX. To consider the effect of latent heat that is generated by melting ice, we have simulated two phase numerical analyses used enthalpy method and found the temperature, velocity, and ice mass distribution for calculating the efficiency of cooling. From the results of numerical analysis, we have obtained the relationship between the cooling efficiency and each design factor.

Effect of Filler on the Flow of Counter Flow Type Cooling Tower (충진재(Filler)가 대향류형(Counter Flow Type) 냉각탑 유동에 미치는 영향에 대한 연구)

  • Shin, Jeong-Hoon;Lee, Jun-Kyoung;Jin, Cheol-Gyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.565-572
    • /
    • 2022
  • The white plume from the cooling tower can be generated by mixing between discharging hot and humid air and cold air outside. This causes various problems such as icing, traffic disturbances, and fire factors in the vicinity, moreover it can also damage the image of a company. Various methods can be used to prevent white plume, one of them is to install a heat exchanger at the outlet of the cooling tower so that the heat exchanger transfers as much heat as possible to lower the temperature. Therefore the air flow path in the cooling tower should be optimized. Installation of the filler can be used to make the air flow better, thus we investigate the effect of filler on the air flow using CFD method. The pressure and velocity profile in the cooling tower could be acquired by the calculations. The filler made the velocity of the air entering the heat exchanger uniform this was because high flow resistance of the filler suppresses the generation of eddy in the cooling tower. But the total air pressure drop increased about 2 times with filler because the pressure drop by the filler accounted for about 60% of the total pressure drop.

Numerical Study on the Effect of Injection Nozzle Shape on the Cooling Performance in Supersonic Film Cooling (초음속 막냉각 유동에서 분사 노즐 형상이 냉각성능에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Sang-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.641-648
    • /
    • 2016
  • In this study, the effect of injection nozzle shape on the supersonic film cooling performance is analyzed using CFD. The design parameters are inside and outside angles of upper plate of nozzle and nozzle tip thickness. It is observed that the mass flow rate of film cooling decreases with increase of inside angle, while the effect of the change of mass flow rate on the film cooling effectiveness is relatively small. In addition, cooling performance is generally reduced, except ahead of the local region where shock wave interaction with film cooling occurs, in accordance with the growth of the outside angle and tip thickness. In this paper, the CFD simulation is performed using a commercial software, ANSYS Fluent V15.0, and the CFD model is validated by comparing it with the experimental data shown in preceding research.

Effect analysis of geothermal cooling and heating system (지열냉난방 시스템의 효과 분석)

  • Kim, Byeong-Kak;Kim, Yong-Hwan;Kim, Jong-Deug
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1146_1147
    • /
    • 2009
  • This experiment is significant because we can provide information by measuring effect of energy saving for whom plan to install a geothermal heat & cooling system. The result shows geothemal system can save about 50% of energy(heating : 35%, cooling : 60%) and we verified that when using curtain can help saving 4~12% of energy additionally.

  • PDF

Effect of compression ratio on the heat dissipation of engine (압축비가 기관의 방열에 미치는 영향)

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.89-93
    • /
    • 1983
  • This paper describes on experimental investigation into the heat dissipation of Diesel engine, placing emphasis on the variations of compression ratio and cooling water temperature. The engine used for this test was a vertical single-cylinder four-cycle type, having a direct injection. Engine performance and heat transfer rates was tested under the compression ratio 14.3 and 17.4. In this study, the results showed that output and transfer rates of engine decrease in accordance with the decrease of compression ratio. The effect of cooling water temperature and injection delay of fuel on the heat dissipation brings about the decrease of heat transfer rates from cylinder to cooling water.

  • PDF

Effect analysis of geothermal cooling and heating system (지열(수온차)냉난방 시스템 효과 분석)

  • Chung, Hoon;Ma, Bum-Gu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.365-368
    • /
    • 2008
  • This experiment is significant because we can provide information by measuring effect of energy saving for whom plan to install a geothermal heat & cooling system. The result shows geothemal system can save about 50% of energy(heating : 35%, cooling : 60%) and we verified that when using curtain can help saving $4{\sim}12%$ of energy additionally

  • PDF

Cycle Analysis of Air-Cooled Double-Effect Absorption Cooling System Using H2O/LiBr+HO(CH2)3OH (H2O/LiBr+HO(CH2)3OH계 공냉형 이중효용 흡수식 냉방시스템의 사이클 해석)

  • Kwon, Oh-Kyung;Moon, Choon-Geun;Yoon, Jung-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.272-280
    • /
    • 1999
  • A cycle analysis was achieved to predict the characteristics by comprehensive modeling and simulation of an air-cooled, double-effect absorption system using a new $H_2O/LiBr+HO(CH_2)_3OH$ solution. The simulation results showed that the new working fluid may provide the crystallization limit 8% higher than the conventional $H_2O/LiBr$ solution. With a crystallization margin of 3wt%(weight%), the optimal solution distribution ratio was found in the range of 36 to 40%. Variation of cooling air Inlet temperature has a sensitive effect on the cooling COP and corrosion problem. The simulation of heat exchangers with UA value revealed that the absorber and the evaporator are relatively important for an air-cooled system compared with the condenser and the low temperature generator. The effect of cooling air flow rate, circulation weak solution flow rate and chilled water inlet temperature were also examined. The new working fluid may provide the COP approximately 5% higher than the conventional $H_2O/LiBr$ solution.

A Study on the Performance of Thermoelectric Module and Thermoelectric Cooling System (열전소자 및 열전냉각장치의 성능에 관한 연구)

  • 유성연;홍정표;심우섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2004
  • Thermoelectric module is a device that can produce cooling in a direct manner using the electrical energy. The purpose of this study is to investigate the performance of thermoelectric module and cooling system equipped with the thermoelectric module. The performance of a thermoelectric module is estimated using two methods; theoretical analysis based on one-dimensional energy equations and experimental tests using heat source, heat sink and brass conduction extenders. For the thermoelectric cooling system, the temperatures in the chamber are recorded and then compared with those of lumped system analysis. The results show that the cooling capacity and COP of the thermoelectric module increases as the temperature difference between hot and cold surface decreases, and there is particular current at which cooling capacity reaches its maximum value. The experimental results for the thermoelectric cooling system are similar to those of lumped system analysis.