• 제목/요약/키워드: CONV

검색결과 115건 처리시간 0.031초

회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교 (Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed)

  • 문기영;김형진;황세윤;이장현
    • 한국항해항만학회지
    • /
    • 제46권3호
    • /
    • pp.280-288
    • /
    • 2022
  • 본 연구는 정상 가동 중에도 회전수가 변하는 기기의 이상 및 고장 진단 방안을 다루고 있다. 회전수가 변함에 따라 비정상적 시계열 특성을 내포한 센서 데이터에 기계학습을 적용할 수 있는 절차를 제시하고자 하였다. 기계학습으로는 k-Nearest Neighbor(k-NN), Support Vector Machine(SVM), Random Forest을 사용하여 이상 및 고장 진단을 수행하였다. 또한 진단 정확성을 비교할 목적으로 이상 감지에 오토인코더, 고장진단에는 합성곱 기반의 Conv1D도 추가로 이용하였다. 비정상적 시계열로부터 통계 및 주파수 속성으로 구성된 시계열 특징 벡터를 추출하고, 추출된 특징 벡터에 정규화 및 차원 축소 기법을 적용하였다. 특징 벡터의 선택과 정규화, 차원 축소 여부에 따라 달라지는 기계학습의 진단 정확도를 비교하였다. 또한, 적용된 학습 알고리즘 별로 초매개변수 최적화 과정과 적층 구조를 설명하였다. 최종적으로 기존의 심층학습과 비교하여, 기계학습도 가변 회전기기의 고장을 정확하게 진단할 수 있는 절차를 제시하였다.

형태학적 연산과 경계추출 학습이 강화된 U-Net을 활용한 Sentinel-1 영상 기반 수체탐지 (Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images)

  • 김휘송;김덕진;김준우
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.793-810
    • /
    • 2022
  • 실시간 범람 모니터링을 위해 인공위성 SAR영상을 활용하는 수체탐지에 대한 필요성이 대두되었다. 주야와 기상에 상관없이 주기적으로 촬영 가능한 인공위성 SAR 영상은 육지와 물의 영상학적 특징이 달라 수체탐지에 적합하나, 스페클 노이즈와 영상별 상이한 밝기 값 등의 한계를 내포하여 다양한 시기에 촬영된 영상에 일괄적으로 적용 가능한 수체탐지 알고리즘 개발이 쉽지 않다. 이를 위해 본 연구에서는 Convolutional Neural Networks (CNN)기반 모델인 U-Net 아키텍처에 레이어의 조합인 모듈을 추가하여 별도의 전처리 없이 수체탐지의 정확도 향상 방법을 제시하였다. 풀링 레이어의 조합을 활용하여 형태학적 연산처리 효과를 제공하는 Morphology Module과 전통적인 경계탐지 알고리즘의 가중치를 대입한 컨볼루션 레이어를 사용하여 경계 학습을 강화시키는 Edge-enhanced Module의 다양한 버전을 테스트하여, 최적의 모듈 구성을 도출하였다. 최적의 모듈 버전으로 판단된 min-pooling과 max-pooling이 연속으로 이어진 레이어와 min-pooling로 구성된 Morphology 모듈과 샤를(Scharr) 필터를 적용한 Edge-enhanced 모듈의 산출물을 U-Net 모델의 conv 9에 입력자료로 추가하였을 때, 정량적으로 9.81%의 F1-score 향상을 보여주었으며, 기존의 U-Net 모델이 탐지하지 못한 작은 수체와 경계선을 보다 세밀하게 탐지할 수 있는 성능을 정성적 평가를 통해 확인하였다.

센서 노드 응용을 위한 저전력 8비트 1MS/s CMOS 비동기 축차근사형 ADC 설계 (Design of a Low-Power 8-bit 1-MS/s CMOS Asynchronous SAR ADC for Sensor Node Applications)

  • 손지훈;김민석;천지민
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.454-464
    • /
    • 2023
  • 본 논문은 센서 노드 응용을 위한 1MS/s의 샘플링 속도를 가지는 저전력 8비트 비동기 축차근사형(successive approximation register, SAR) 아날로그-디지털 변환기(analog-to-digital converter, ADC)를 제안한다. 이 ADC는 선형성을 개선하기 위해 부트스트랩 스위치를 사용하며, 공통모드 전압(Common-mode voltage, VCM) 기반의 커패시터 디지털-아날로그 변환기 (capacitor digital-to-analog converter, CDAC) 스위칭 기법을 적용하여 DAC의 전력 소모와 면적을 줄인다. 외부 클럭에 동기화해서 동작하는 기존 동기 방식의 SAR ADC는 샘플링 속도보다 빠른 클럭의 사용으로 인해 전력 소비가 커지는 단점을 가지며 이는 내부 비교를 비동기 방식으로 처리하는 비동기 SAR ADC 구조를 사용하여 해결할 수 있다. 또한, 낮은 해상도의 설계에서 발생하는 큰 디지털 전력 소모를 줄이기 위해 동적 논리 회로를 사용하여 SAR 로직를 설계하였다. 제안된 회로는 180nm CMOS 공정으로 시뮬레이션을 수행하였으며, 1.8V 전원전압과 1MS/s의 샘플링 속도에서 46.06𝜇W의 전력을 소비하고, 49.76dB의 신호 대 잡음 및 왜곡 비율(signal-to-noise and distortion ratio, SNDR)과 7.9738bit의 유효 비트 수(effective number of bits, ENOB)를 달성하였으며 183.2fJ/conv-step의 성능 지수(figure-of-merit, FoM)를 얻었다. 시뮬레이션으로 측정된 차동 비선형성(differential non-linearity, DNL)과 적분 비선형성(integral non-linearity, INL)은 각각 +0.186/-0.157 LSB와 +0.111/-0.169 LSB이다.

스미스 차트를 이용한 구리 인터커텍트의 비파괴적 부식도 평가 (Nondestructive Quantification of Corrosion in Cu Interconnects Using Smith Charts)

  • 강민규;김남경;남현우;강태엽
    • 마이크로전자및패키징학회지
    • /
    • 제31권2호
    • /
    • pp.28-35
    • /
    • 2024
  • 전자패키지 내부의 부식이 시스템 성능 및 신뢰성에 큰 영향을 미치고 있어, 시스템 건전성 관리를 위해 부식에 대한 비파괴적 진단 기법의 필요성이 커지고 있다. 본 연구에서는 복소 임피던스의 크기와 위상을 통합적으로 시각화하는 도구인 스미스 차트를 활용하여, 구리 인터커넥트의 부식을 비파괴적으로 평가하는 방법을 제시하고자 한다. 실험을 위해 구리 전송선을 모사한 시편을 제작하고, MIL-STD-810G 기준 온습도 사이클에 노출시켜 시편에 부식을 인가하였다. R 채널 기반 색변화로 시편의 부식도를 정량적으로 평가하고 레이블링 하였다. 부식의 성장에 따라 시편의 S-파라미터와 스미스 차트를 측정한 결과, 5 단계의 부식도에 따라 유의미한 패턴의 변화가 관찰되어, 스미스 차트가 부식도 평가에 효과적인 도구임을 확인하였다. 더 나아가 데이터 증강을 통해 다양한 부식도를 갖는 4,444개의 스미스 차트를 확보하여, 스미스 차트를 입력 받아 구리 인터커넥트의 부식 단계를 출력하는 인공지능 모델을 학습시켰다. 이미지 분류에 특화된 CNN 및 Transfomrer 모델을 적용한 결과, ConvNeXt 모델이 정확도 89.4%로 가장 높은 부식 진단 성능을 보였다. 스미스 차트를 이용하여 전자패키지 내부 부식을 진단할 경우, 전자신호를 이용하는 비파괴적 평가를 수행할 수 있다. 또한. 신호 크기와 위상 정보를 통합적으로 시각화 하여 직관적이며 노이즈에 강건한 진단이 가능할 것으로 기대한다.

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

A Multi-Stage Convolution Machine with Scaling and Dilation for Human Pose Estimation

  • Nie, Yali;Lee, Jaehwan;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.3182-3198
    • /
    • 2019
  • Vision-based Human Pose Estimation has been considered as one of challenging research subjects due to problems including confounding background clutter, diversity of human appearances and illumination changes in scenes. To tackle these problems, we propose to use a new multi-stage convolution machine for estimating human pose. To provide better heatmap prediction of body joints, the proposed machine repeatedly produces multiple predictions according to stages with receptive field large enough for learning the long-range spatial relationship. And stages are composed of various modules according to their strategic purposes. Pyramid stacking module and dilation module are used to handle problem of human pose at multiple scales. Their multi-scale information from different receptive fields are fused with concatenation, which can catch more contextual information from different features. And spatial and channel information of a given input are converted to gating factors by squeezing the feature maps to a single numeric value based on its importance in order to give each of the network channels different weights. Compared with other ConvNet-based architectures, we demonstrated that our proposed architecture achieved higher accuracy on experiments using standard benchmarks of LSP and MPII pose datasets.

Safe Web Using Scrapable Headless Browser in Network Separation Environment

  • Jung, Won-chi;Park, Jeonghun;Park, Namje
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권8호
    • /
    • pp.77-85
    • /
    • 2019
  • In this paper, we propose a "Safe Web Using Scrapable Headless Browse" Because in a network separation environment for security, It does not allow the Internet. The reason is to physically block malicious code. Many accidents occurred, including the 3.20 hacking incident, personal information leakage at credit card companies, and the leakage of personal information at "Interpark"(Internet shopping mall). As a result, the separation of the network separate the Internet network from the internal network, that was made mandatory for public institutions, and the policy-introduction institution for network separation was expanded to the government, local governments and the financial sector. In terms of information security, network separation is an effective defense system. Because building a network that is not attacked from the outside, internal information can be kept safe. therefore, "the separation of the network" is inefficient. because it is important to use the Internet's information to search for it and to use it as data directly inside. Using a capture method using a Headless Web browser can solve these conflicting problems. We would like to suggest a way to protect both safety and efficiency.

Improved Sliding Shapes for Instance Segmentation of Amodal 3D Object

  • Lin, Jinhua;Yao, Yu;Wang, Yanjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5555-5567
    • /
    • 2018
  • State-of-art instance segmentation networks are successful at generating 2D segmentation mask for region proposals with highest classification score, yet 3D object segmentation task is limited to geocentric embedding or detector of Sliding Shapes. To this end, we propose an amodal 3D instance segmentation network called A3IS-CNN, which extends the detector of Deep Sliding Shapes to amodal 3D instance segmentation by adding a new branch of 3D ConvNet called A3IS-branch. The A3IS-branch which takes 3D amodal ROI as input and 3D semantic instances as output is a fully convolution network(FCN) sharing convolutional layers with existing 3d RPN which takes 3D scene as input and 3D amodal proposals as output. For two branches share computation with each other, our 3D instance segmentation network adds only a small overhead of 0.25 fps to Deep Sliding Shapes, trading off accurate detection and point-to-point segmentation of instances. Experiments show that our 3D instance segmentation network achieves at least 10% to 50% improvement over the state-of-art network in running time, and outperforms the state-of-art 3D detectors by at least 16.1 AP.

Application of Convolutional Neural Networks (CNN) for Bias Correction of Satellite Precipitation Products (SPPs) in the Amazon River Basin

  • Alena Gonzalez Bevacqua;Xuan-Hien Le;Giha Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.159-159
    • /
    • 2023
  • The Amazon River basin is one of the largest basins in the world, and its ecosystem is vital for biodiversity, hydrology, and climate regulation. Thus, understanding the hydrometeorological process is essential to the maintenance of the Amazon River basin. However, it is still tricky to monitor the Amazon River basin because of its size and the low density of the monitoring gauge network. To solve those issues, remote sensing products have been largely used. Yet, those products have some limitations. Therefore, this study aims to do bias corrections to improve the accuracy of Satellite Precipitation Products (SPPs) in the Amazon River basin. We use 331 rainfall stations for the observed data and two daily satellite precipitation gridded datasets (CHIRPS, TRMM). Due to the limitation of the observed data, the period of analysis was set from 1st January 1990 to 31st December 2010. The observed data were interpolated to have the same resolution as the SPPs data using the IDW method. For bias correction, we use convolution neural networks (CNN) combined with an autoencoder architecture (ConvAE). To evaluate the bias correction performance, we used some statistical indicators such as NSE, RMSE, and MAD. Hence, those results can increase the quality of precipitation data in the Amazon River basin, improving its monitoring and management.

  • PDF

생성적 적대 신경망(GAN)을 활용한 강우예측모델 개발 (Developing radar-based rainfall prediction model with GAN(Generative Adversarial Network))

  • 최수연;손소영;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.185-185
    • /
    • 2021
  • 기후변화로 인한 돌발 강우 등 이상 기후 현상이 증가함에 따라 정확한 강우예측의 중요성은 더 증가하는 추세이다. 전통적인 강우예측의 경우 기상수치모델 또는 외삽법을 이용한 레이더 기반 강우예측 기법을 이용하며, 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 개발되고 있다. 기존 머신러닝을 이용한 강우예측 모델의 경우 주로 시계열 이미지 예측에 적합한 2차원 순환 신경망 기반 기법(Convolutional Long Short-Term Memory, ConvLSTM) 또는 합성곱 신경망 기반 기법(Convolutional Neural Network(CNN) Encoder-Decoder) 등을 이용한다. 본 연구에서는 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용해 미래 강우예측을 수행하도록 하였다. GAN 방법론은 이미지를 생성하는 생성자와 이를 실제 이미지와 구분하는 구별자가 경쟁하며 학습되어 현재 이미지 생성 분야에서 높은 성능을 보여주고 있다. 본 연구에서 개발한 GAN 기반 모델은 기상청에서 제공된 2016년~2019년까지의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시키고, 2020년 레이더 이미지 자료를 이용해 단기강우예측을 모의하였다. 또한, 기존 머신러닝 기법을 기반으로 한 모델들의 강우예측결과와 GAN 기반 모델의 강우예측결과를 비교분석한 결과, 본 연구를 통해 개발한 강우예측모델이 단기강우예측에 뛰어난 성능을 보이는 것을 확인할 수 있었다.

  • PDF