• 제목/요약/키워드: CONCOR분석

검색결과 81건 처리시간 0.028초

빅데이터 분석을 통한 한국과 미국의 스타벅스 비교 분석 (A Comparison of Starbucks between South Korea and U.S.A. through Big Data Analysis)

  • 조아라;김학선
    • 한국조리학회지
    • /
    • 제23권8호
    • /
    • pp.195-205
    • /
    • 2017
  • The purpose of this study was to compare the Starbucks in South Korea with Starbucks in U.S.A through the semantic network analysis of big data by collecting online data with SCTM(Smart Crawling & Text Mining) program which was developed by big data research institute at Kyungsung University, a data collecting and processing program. The data collection period was from January 1st 2014 to December 7th 2017, and packaged Netdraw along with UCINET 6.0 were utilized for data analysis and visualization. After performing CONCOR(convergence of iterated correlation) analysis and centrality analysis, this study illustrated the current characteristics of Starbucks for Korea and U.S.A reflected by the social network and the differences between Korea and U.S.A. Since the Starbucks was greatly developed, especially in Korea. this study also was supposed to provide significant and social-network oriented suggestions for Starbucks USA, Starbucks Korea and also the whole coffee industry. Also this study revealed that big data analytics can generate new insights into variables that have been extensively studied in existing hospitality literature. In addition, implications for theory and practice as well as directions for future research are discussed.

사회-공간 네트워크 분석을 활용한 초등학교 공간계획방향에 관한 연구 (A Study on Improvement of the School Space through Socio-Spatial Network Analysis)

  • 전영훈;김윤영
    • 대한건축학회논문집:계획계
    • /
    • 제35권5호
    • /
    • pp.21-30
    • /
    • 2019
  • The purpose of this study is to present the direction of the new space plan by reflecting the opinions of the user (student) in the existing standardized elementary school space planning. The purpose of this study is to investigate the activities of elementary school students by using socio - spatial network analysis method and to propose the direction of new elementary school space planning through the results. We analyzed the results of each centrality by using the analysis of closeness analysis, betweeness analysis, girvan-newman clustering, and concor analysis. The results of this study are as follows. First, it should be planned to use the classroom and the special room as one area by utilizing the corridor. Second, it should be planned that the outdoor space and the indoor space are closely related to each other by utilizing the hall, the lobby and the classroom. Third, the school should create a small space where physical activity is possible in an indoor space of the school. In order to improve the standardized elementary school space, this study proposes a method to reflect the opinions of the users in the school planning stage.

코로나19 관련 키워드 분석: 토픽 모델링과 의미 연결망 네트워크 분석을 중심으로 (COVID19 Related Keyword Analysis: Based on Topic Modeling and Semantic Network Analysis)

  • 김동욱;이민상;정재영;김현철
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.127-132
    • /
    • 2022
  • In the era of COVID-19 pandemic, COVID related keywords, news and SNS data are pouring out. With the help of the data and LDA topic modeling, we can check out what media reports about COVID-19 and vaccines. Also, we can be clear how the public reacts to the vaccine on social media and how this is related with the increasing number of COVID-19 patients. By using sentimental analysis methodology, we can get to know about the different kinds of reports that Korea media send out and get to know what kind of emotions that each media company uses in majority. Through this procedure, we can know the difference between the Korean media and the foreign ones. Ultimately, we can find and analyze the keyword that suddenly rose during the COVID-19 period throughout this research.

빅데이터를 이용한 비건 패션 쟁점의 분석 -한국, 중국, 미국을 중심으로- (Perception and Trend Differences between Korea, China, and the US on Vegan Fashion -Using Big Data Analytics-)

  • 정지운;윤소정
    • 한국의류학회지
    • /
    • 제47권5호
    • /
    • pp.804-821
    • /
    • 2023
  • This study examines current trends and perceptions of veganism and vegan fashion in Korea, China, and the United States. Using big data tools Textom and Ucinet, we conducted cluster analysis between keywords. Further, frequency analysis using keyword extraction and CONCOR analysis obtained the following results. First, the nations' perceptions of veganism and vegan fashion differ significantly. Korea and the United States generally share a similar understanding of vegan fashion. Second, the industrial structures, such as products and businesses, impacted how Korea perceived veganism. Third, owing to its ongoing sociopolitical tensions, the United States views veganism as an ethical consumption method that ties into activism. In contrast, China views veganism as a healthy diet rather than a lifestyle and associates it with Buddhist vegetarianism. This perception is because of their religious history and culinary culture. Fundamentally, this study is meaningful for using big data to extract keywords related to vegan fashion in Korea, China, and the United States. This study deepens our understanding of vegan fashion by comparing perceptions across nations.

언어 네트워크 분석을 통한 노인 구강 건강 연구 동향 탐구 (Exploring the research trends of elderly oral health through language network analysis)

  • 김윤정
    • 한국치위생학회지
    • /
    • 제23권6호
    • /
    • pp.451-458
    • /
    • 2023
  • Objectives: The purpose of this study is to explore the research trends of elderly oral health through a language network analysis. Methods: A total of 354 published studies with 668 keywords were collected from the Research Information Sharing Service (RISS) between 2000 and 2022. Language network analysis was performed using Textom 6.0, Ucinet 6.774, and NetDraw 2.183. Results: The most frequent keywords were 'elderly', 'oral health', 'quality of life', and 'OHIP-14'. The result of frequency-inverse document frequent keywords showed similar results to the most frequent keywords. The N-gram of keywords shows that 'elderly', 'oral health' (18 times) and 'elderly', 'depression' (7 times). As a results of the analysis of degree centrality and between centrality, 'elderly', 'oral health', and 'quality of life' were found to be high. The CONCOR analysis identified the main clusters of 'quality of life', 'oral health behavior', 'health', and 'oral function disorder'. Conclusions: The results of the current study could be available to know research trends in elderly oral health and it is necessary to improve more comprehensive study in follow-up study.

빅데이터를 활용한 어촌체험휴양마을 방문객의 경험분석 - 화성시 백미리와 양양군 수산리 어촌체험휴양마을을 대상으로 - (An Analysis of the Experience of Visitors of Fishing Experience Recreation Village Using Big Data - A Focus on Baekmi Village in Hwaseong-si and Susan Village in Yangyang-gun -)

  • 송소현;안병철
    • 농촌계획
    • /
    • 제27권4호
    • /
    • pp.13-24
    • /
    • 2021
  • This study used big data to analyze visitors' experiences in Fishing Experience Recreation Village. Through the portal site posting data for the past six years, the experience of visiting Fishing Experience Villages in Baekmi and Susan was analyzed. The analysis method used Text mining and Social Network Analysis which are Big data analysis techniques. Data was collected using Textom, and experience keywords were extracted by analyzing the frequency and importance of experience texts. Afterwards, the characteristics of the experience of visiting the Fishing Experience Village were identified through the analysis of the interaction between the experience keywords using 'U cinet 6.0' and 'NetDraw'. First, through TF and TF-IDF values, keywords such as "Gungpyeong Port", "Susan Port", and "Yacht Marina" that refer to the name of the port and the port facilities appeared at the top. This is interpreted as the name of the port has the greatest impact on the recognition of the Fishing Experience Villages, and visitors showed a lot of interest in the port facilities. Second, focusing on the unique elements of port facilities and fishing villages such as "mud flat experience", "fishing village experience", "Gungpyeong port", "Susan port", "yacht marina", and "beach" through the values of degree, closeness, and betweenness centrality interpreted as having an interaction with various experiences. Third, through the CONCOR analysis, it was confirmed that the visitor's experience was focused on the dynamic behavior, the experience program had the greatest influence on the experience of the visitor, and that the experience of the static and the dynamic behavior was relatively balanced. In conclusion, the experience of visitors in the Fishing Experience Villages is most affected by the environment of the fishing village such as the tidal flats and the coast and the fishing village experience program conducted at the fishing port facilities. In particular, it was found that fishing port facilities such as ports and marinas had a high influence on the awareness of the Fishing Experience Villages. Therefore, it is important to actively utilize the scenery and environment unique to fishing villages in order to revitalize the Fishing Experience Villages experience and improve the quality of the visitor experience. This study is significant in that it studied visitors' experiences in fishing village recreation villages using big data and derived the connection between fishing village and fishing village infrastructure in fishing village experience tourism.

소셜 미디어 빅데이터를 활용한 호캉스(hocance) 현상 분석 (An Analysis of the Hocance Phenomenon using Social Media Big Data)

  • 최홍열;박은경;남장현
    • 아태비즈니스연구
    • /
    • 제12권2호
    • /
    • pp.161-174
    • /
    • 2021
  • Purpose - The purpose of this study was to examine the recent popular consumption trend, the hocance phenomenon, using social media big data. The study intended to present practical directions and marketing measures for the recovery and growth of the hotel industry after COVID-19 pandemic. Design/methodology/approach - Big data analysis has been used in various fields, and in this study, it was used to understand the hocance phenomenon. For three years from January 1, 2018 to December 31, 2020, we collected text data including the keyword 'hocance' from the blog and cafe of NAVER and Daum. TEXTOM and UCINET 6 were used to collect and analyze the data. Findings - According to the results of analysis, the words such as 'hocance', 'hotel', 'Seoul', 'travel', 'swimming pool', 'Incheon', 'breakfast', 'child' and 'friend' were identified with high frequency. The results of CONCOR analysis showed similar results in all three years. It has been confirmed that 'swimming pool', 'breakfast', 'child' and 'friend' are important when deciding on the hocance package. Research implications or Originality - The study was differentiated in that it used social media big data instead of traditional research methods. Furthermore, it reflected social phenomena as a consumption trend so there was practical value in establishing marketing strategies for the tourism and hotel industry.

뉴스 빅데이터를 활용한 수소 이슈 탐색 (A Study on Social Issues for Hydrogen Industry Using News Big Data)

  • 최일영;김혜경
    • 한국수소및신에너지학회논문집
    • /
    • 제33권2호
    • /
    • pp.121-129
    • /
    • 2022
  • With the advent of the post-2020 climate regime, the hydrogen industry is growing rapidly around the world. In order to build the hydrogen economy, it is important to identify social issues related to hydrogen and prepare countermeasures for them. Accordingly, this study conducted a semantic network analysis on hydrogen news from NAVER. As a result of the analysis, the number of hydrogen news in 2020 increased by 4.5 times compared to 2016, and as of 2018, the hydrogen issue has shifted from an environmental aspect to an economic aspect. In addition, although the initial government-led hydrogen industry is expanding to the mobility field such as privately-led fuel cell electric vehicles and hydrogen fuel, terms showing concerns about the safety such as explosions are constantly being exposed. Thus, it is necessary not only to expand the hydrogen ecosystem through the participation of private companies, but also to promote hydrogen safety.

텍스트 마이닝과 네트워크 분석을 이용한 지역 이미지 변화 분석 (Regional Image Change Analysis using Text Mining and Network Analysis)

  • 정은희
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.79-88
    • /
    • 2022
  • 소셜미디어 빅데이터는 소비자의 소비형태 뿐만 아니라 지역의 이미지를 파악할 수 있는 많은 정보가 포함되어 있다. 본 논문에서는 국내 포털 사이트인 네이버와 다음의 Blog와 Cafe로부터 '삼척'이 포함된 데이터를 2015년부터 2019년까지 1년 단위로 수집하였고, 텍스트 마이닝과 네트워크 분석을 실시하여 지역 이미지를 형성하는 키워드를 추출하고 지역 이미지 변화를 분석하였다. 연구 결과에 따르면, 2015년 지역 이미지는 '장호항', '동해', '해수욕장' 등 인근 지명이나 장소 등의 이미지 인지적 요소들로 표현되고 있는데, 2016년과 2019년은 지역 내의 특정 장소인 삼척쏠비치로 이미지 인지적 요소가 변한 것을 알 수 있다. 그리고 지역 이미지와 연관된 키워드들이 삼척을 대표하는 명소인 '장호항', 리조트가 포함하고 있는 것을 보아 지역 이미지 형성에 인프라 시설 요소가 큰 역할을 한다고 볼 수 있다. 네트워크 데이터에 대한 유의성 검증은 부트스트랩 기법을 이용하였고, 2015년, 2016년, 2019년 p-value가 각각 0.0002, 0.0006, 0.0002로 유의수준 5%에서 통계적으로 유의한 것으로 나타났다.

패션 트렌드의 주기적 순환성에 관한 빅데이터 융합 분석 (The Analysis of Fashion Trend Cycle using Big Data)

  • 김기현;변혜원
    • 한국융합학회논문지
    • /
    • 제11권12호
    • /
    • pp.113-123
    • /
    • 2020
  • 본 논문은 과거와 현재의 패션 트렌드와 패션 유행 주기에 관한 빅데이터 분석을 실시하였다. 패션 전문가나 패션쇼가 아닌 일반 사람들의 데일리룩을 위한 패션 트렌드를 분석하는데 집중하였다. 소셜 매트릭스 도구인 텍스톰을 활용하여 빈도수 분석, N-gram 분석, 네트워크 분석 및 구조적 등위성 분석을 수행하였다. 분석 결과, 첫째, 패션 전문가가 아닌 일반 사람들의 데일리 룩을 대상으로 과거(1980년대, 1990년대)와 현재(2019년, 2020년)의 패션 키워드를 도출하였다. 둘째, 과거의 패션이 현재의 패션으로 재현되는 순환성과 순환 주기가 30-40년 정도로 짧아졌음을 빅데이터 분석을 통해 과학적으로 검증하였다. 셋째, 도출된 패션 키워드들의 구조적 등위성 분석을 수행한 결과, 과거 패션에서는 청바지 패션, 레트로 코디, 애슬레저룩, 연예인 복고패션의 4개의 군집으로, 현재 패션에서는 레트로 청바지, 뉴트로, 레이디 쉬크, 레트로 퓨처리즘의 4개의 군집을 확인하였다. 넷째, 과거의 패션이 현재의 패션으로 재현되고 진화하는 네트워크 연결 관계를 확인하고 그 배경에 관한 이슈를 고찰하였다. 이와 같은 연구결과는 과거와 현재의 패션 키워드를 도출하고 이로부터 패션 유행의 순환 주기를 확인함으로써 과거를 통해 미래 패션을 예측하도록 하는데 의의가 있다.