• Title/Summary/Keyword: COMSOL SIMULATION

Search Result 84, Processing Time 0.026 seconds

Improvement on Coupling Technique Between COMSOL and PHREEQC for the Reactive Transport Simulation

  • Dong Hyuk Lee;Hong Jang;Hyun Ho Cho;Jeonghwan Hwang;Jung-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.175-182
    • /
    • 2023
  • APro, a modularized process-based total system performance assessment framework, was developed at the Korea Atomic Energy Research Institute (KAERI) to simulate radionuclide transport considering coupled thermal-hydraulic-mechanical-chemical processes occurring in a geological disposal system. For reactive transport simulation considering geochemical reactions, COMSOL and PHREEQC are coupled with MATLAB in APro using an operator splitting scheme. Conventionally, coupling is performed within a MATLAB interface so that COMSOL stops the calculation to deliver the solution to PHREEQC and restarts to continue the simulation after receiving the solution from PHREEQC at every time step. This is inefficient when the solution is frequently interchanged because restarting the simulation in COMSOL requires an unnecessary setup process. To overcome this issue, a coupling scheme that calls PHREEQC inside COMSOL was developed. In this technique, PHREEQC is called through the "MATLAB function" feature, and PHREEQC results are updated using the COMSOL "Pointwise Constraint" feature. For the one-dimensional advection-reaction-dispersion problem, the proposed coupling technique was verified by comparison with the conventional coupling technique, and it improved the computation time for all test cases. Specifically, the more frequent the link between COMSOL and PHREEQC, the more pronounced was the performance improvement using the proposed technique.

Structural Analysis Simulation of Cantilever Shaped Piezoelectric Energy Harvester Using COMSOL Multiphysics (COMSOL Multiphysics를 활용한 캔틸레버 형태의 압전 에너지 하베스터 구조 해석 시뮬레이션)

  • Kwak, Min Sub;Hwang, Geon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.416-425
    • /
    • 2021
  • In the 4th industrial age, electronic devices are becoming smaller and lighter with a low power consumption to overcome spatial limitation. The piezoelectric energy harvesters can convert mechanical kinetic energy into electric energy; thus, enabling the operation of small electronic devices. Recently, various piezoelectric harvesters have been reported and the electric output from these harvesters could be anticipated by theoretical analysis methods. For example, COMSOL Multiphysics software provides a theoretical simulation of piezoelectric effect with a combination of mechanical and electrical phenomena in the piezoelectric materials. This article introduces a brief modeling of piezoelectric harvester to investigate mechanical stress and electrical output of harvesting devices by the COMSOL Multiphysics software.

Analyze on Heat-sink of 20Watt Class LED Lamp using COMSOL (COMSOL을 이용한 20W급 LED램프의 방열 해석)

  • Eo, Ik-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1484-1488
    • /
    • 2009
  • This thesis is about Heat-sink design which is considered as the biggest problems for commercialization of LED lighting and suggests how to solve the problems though analysis on heat-sink using COMSOL. The temperature difference after simulation value and modelling was $10^{\circ}C$by Transient analysis of Heat Transfer Module which is in the COMSOL Multiphysics. The result approximated the object which is close to actual lighting, when various elements are used according to temperature change of interior and exterior surroundings LED lighting is set up.

Verification of the mechanism of methane generation in reservoir using numerical simulation (수치모의를 이용한 호소 내 메탄 발생 기작 검증 연구)

  • Lee, Sung Woo;Bang, Young Jun;Lee, Seung-Yeon;Lee, Seong Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.180-180
    • /
    • 2022
  • 최근 하천 횡단구조물로 형성된 호소 및 저수지에는 오랜 시간동안 다양한 유기 퇴적물이 유입되고 오염되어 호소환경 및 호소 생태계에 악영향을 미칠 수 있으며, 환경 여건에 따라 메탄과 온실가스를 유발할 수도 있다. 이러한 온실가스를 검출하고 그 원인을 파악하여 감축하는 일련의 기술이 국가적인 온실가스 감축 정책과 맞물려 새로운 이슈로 등장하였다. 일반적으로 메탄가스를 측정하는 실험은 BMP(Biochemical Methane Potential)-Test이며, 수치모의에 비해 BMP-Test는 수심이 깊은 지역이나 유속이 빠른 구역에는 적용이 어려운 한계가 존재한다. 이러한 BMP-Test의 한계점을 보완하는 차원에서 사전검증된 수치모형 COMSOL Multiphysics 소프트웨어를 이용하여 메탄가스 발생기작을 재현 및 도출하고 실내 실험결과와 비교 분석하였다. 첫째, COMSOL Multiphysics가 호소에서 발생하는 메탄가스 발생기작의 재현 타당성을 입증하기 위해 동일한 조건의 인공합성된 유기물을 이용한 실내 실험에서 수행된 BMP-Test와 비교·분석을 수행하였다. 둘째, COMSOL Multiphysics에 TOC(총유기탄소), TP(총 인)에 따른 유기물 조건과 메탄 발생 화학식을 설정하여 온도에 따른 메탄 생성량과 반응상수를 산출하였고, 이를 BMP-Test 결과와 비교하였다. BMP-Test의 비교·분석 결과를 바탕으로 하천 및 호소에서 발생하는 메탄가스 발생에 대한 COMSOL Multiphysics의 활용가능성을 검증하였다. 향후 하천 및 호소로부터의 발생가능한 온실가스 감축 목표를 달성하기 위한 하천 유기물 환경의 평가 또는 최적화 조성에 유사한 검증과정을 거친 COMSOL Multiphysics를 활용할 수 있을 거라 기대된다.

  • PDF

The Development of Converting Program from Sealed Geological Model to Gmsh, COMSOL for Building Simulation Grid (시뮬레이션 격자구조 제작을 위한 Mesh 기반 지질솔리드모델의 Gmsh, COMSOL 변환 프로그램 개발)

  • Lee, Chang Won;Cho, Seong-Jun
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.80-90
    • /
    • 2017
  • To build tetrahedra mesh for FEM numerical analysis, Boundary Representation (B-Rep) model is required, which provides the efficient volume description of an object. In engineering, the parametric solid modeling method is used for building B-Rep model. However, a geological modeling generally adopts discrete modeling based on the triangulated surface, called a Sealed Geological Model, which defines geological domain by using geological interfaces such as horizons, faults, intrusives and modeling boundaries. Discrete B-Rep model is incompatible with mesh generation softwares in engineering because of discrepancies between discrete and parametric technique. In this research we have developed a converting program from Sealed Geological Model to Gmsh and COMSOL software. The developed program can convert complex geological model built by geomodeling software to user-friendly FEM software and it can be applied to geoscience simulation such as geothermal, mechanical rock simulation etc.

Multi-field Coupling Simulation and Experimental Study on Transformer Vibration Caused by DC Bias

  • Wang, Jingang;Gao, Can;Duan, Xu;Mao, Kai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.176-187
    • /
    • 2015
  • DC bias will cause abnormal vibration of transformers. Aiming at such a problem, transformer vibration affected by DC bias has been studied combined with transformer core and winding vibration mechanism use multi-physical field simulation software COMSOL in this paper. Furthermore the coupling model of electromagnetic-structural force field has been established, and the variation pattern of inner flux density, distribution of mechanical stress, tension and displacement were analyzed based on the coupling model. Finally, an experiment platform has been built up which was employed to verify the correctness of model.

Development of High Frequency pMUT Based on Sputtered PZT

  • Lim, Un-Hyun;Yoo, Jin-Hee;Kondalkar, Vijay;Lee, Keekeun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2434-2440
    • /
    • 2018
  • A new type of piezoelectric micromachined ultrasonic transducer (pMUT) with high resonant frequency was developed by using a thin lead zirconate titanate (PZT) as an insulation layer on a floating $10{\mu}m$ silicon membrane. The PZT insulation layer facilitated acoustic impedance matching at active pMUT, leading to a high performance in the acoustic conversion property compared with the transducer using $SiO_2$ insulation layer. The fabricated ultrasonic devices were wirelessly measured by connecting two identical acoustic transducers to two separate ports in a single network analyzer simultaneously. The acoustic wave emitted from a transducer induced a $3.16{\mu}W$ on the other side of the transducer at a distance of 2 cm. The transducer performances in terms of device diameters, PZT thickness, annealings, and different DC polings, etc. were investigated. COMSOL simulation was also performed to predict the device performances prior to fabrication. Based on the COMSOL simulation, the device was fabricated and the results were compared.

Behavior of ultrasonic transducer in air by using finite element method simulation (FEM 시뮬레이션을 이용한 공기 중에서의 초음파 트랜스듀서의 거동)

  • Chae, Yeon-Hwa;Choi, Kyoon;Lee, Ho-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.185-190
    • /
    • 2018
  • The Tonpilz transducer was implemented using the structural module of COMSOL which is a FEM simulation tool. In order to compare the sound pressure characteristics of the transducer with the simulated results, the spacial distribution of the sound pressure level (SPL) was simulated by the acoustic module of COMSOL and then compared with the SPL distribution measured by a microphone. As a result, the resonance frequency and the peak in SPL for the simulation were predicted to be 28 kHz and 163.5 dB, respectively. And the resonance frequency and the peak in SPL for the actual transducer were measured to be 28.84 kHz and 137.8 dB, respectively. It is also confirmed that the simulated SPL distribution and the actually measured one are formed in a similar pattern.

Development of User-friendly Modeling Interface for Process-based Total System Performance Assessment Framework (APro) for Geological Disposal System of High-level Radioactive Waste (고준위폐기물 심층처분시스템에 대한 프로세스 기반 종합성능평가 체계(APro)의 사용자 친화적 모델링 인터페이스 개발)

  • Kim, Jung-Woo;Lee, Jaewon;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.227-234
    • /
    • 2019
  • A user-friendly modeling interface is developed for a process-based total system performance assessment framework (APro) specialized for a generic geological disposal system for high-level radioactive waste. The APro modeling interface is constructed using MATLAB, and the operator splitting scheme is used to combine COMSOL for simulation of multiphysics and PHREEQC for the calculation of geochemical reactions. As APro limits the modeling domain to the generic disposal system, the degree of freedom of the model is low. In contrast, the user-friendliness of the model is improved. Thermal, hydraulic, mechanical and chemical processes considered in the disposal system are modularized, and users can select one of multiple modules: "Default process" and multi "Alternative process". APro mainly consists of an input data part and calculation execution part. The input data are prepared in a single EXCEL file with a given format, and the calculation part is coded using MATLAB. The final results of the calculation are created as an independent COMSOL file for further analysis.

A study on the channel design of bipolar plate of electrolytic cell of hydrogen gas generation system by flow dynamic simulation (수소가스발생 장치의 전해조 분라판의 유로설계에 관한 전산모사 연구)

  • Jo, Hyeon-Hak;Jang, Bong-Jae;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.152-156
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate of generated gas is the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL $Multiphysics^{TM}$ to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator.