• Title/Summary/Keyword: COMSOL Multiphysics package

Search Result 4, Processing Time 0.022 seconds

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

A benchmark for two-dimensional numerical subduction modeling using COMSOL Multiphysics® (콤솔 멀티피직스를 활용한 2차원 수치 섭입모델링 벤치마크)

  • Yu, Suhwan;Lee, Changyeol
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.683-694
    • /
    • 2018
  • Subduction has been the focal point of numerical studies for decades because it plays an important role in the Earth's mass and energy circulations and generates earthquakes and arc volcanoes which are closely related to the human lives. Among the studies on subduction, numerical modeling has been broadly applied to the quantitative studies on the subducting slab in the mantle which cannot be directly observed. In this study, we benchmark the numerical subduction modeling using a finite element package, COMSOL $Multiphysics^{(R)}$ and the results are consistent with the previously reported benchmark results.

Process design for solution growth of SiC single crystal based on multiphysics modeling (다중물리 유한요소해석에 의한 SiC 단결정의 용액성장 공정 설계)

  • Yoon, Ji-Young;Lee, Myung-Hyun;Seo, Won-Seon;Shul, Yong-Gun;Jeong, Seong-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • A top-seeded solution growth (TSSG) is a method of growing SiC single crystal from the Si melt dissolved the carbon. In this study, multiphysics modeling was conducted using COMSOL Multiphysics, a commercialized finite element analysis package, to get analytic results about electromagnetic analysis, heat transfer and fluid flow in the Si melt. Experimental results showed good agreements with simulation data, which supports the validity of the simulation model. Based on the understanding about solution growth of SiC and our set-up, crystal growth was conducted on off-axis 4H-SiC seed crystal in the temperature range of $1600{\sim}1800^{\circ}C$. The grown layer showed good crystal quality confirmed with optical microscopy and high resolution X-ray diffraction, which also demonstrates the effectiveness of the multiphysics model to find a process condition of solution growth of SiC single crystal.

COB, COH Package LED Module Thermal Analysis Simulation (COB, COH Package LED Module 열 해석 시뮬레이션)

  • Choi, Keum-Yeon;Eo, Ik-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5117-5122
    • /
    • 2011
  • In this paper, thermal analysis simulation program by taking advantage of COMSOL Multiphysics, LED Module for the production of the most preferred package type, omitting the COH Type COB Type and board simulation of the thermal analysis is in progress. LED Module that passes through the Heat-sink of the simulation results, depending on the location of the COB Type Max. Approximately $78^{\circ}C$ ~ Min. Approximately $62^{\circ}C$, COH Type the Max. Approximately $88^{\circ}C$ ~ Min. Approximately $67^{\circ}C$ has been confirmed that the temperature stability. Compared with COB Type Max. AIthough temperature difference is about $10^{\circ}C$, Min. At a temperature of about $5^{\circ}C$ confirmed to be enough to reduce the gap, LED Point confirming the results of the temperature curves for COB Type Max. Approximately $100^{\circ}C$ ~ Min. Approximately $77^{\circ}C$, COH Type the Max. Approximately $100^{\circ}C$ ~ Min. Approximately $86^{\circ}C$ temperature stability was confirmed that, COB Type COH Type, compared to approximately $10^{\circ}C$ temperature was higher.