• 제목/요약/키워드: COMSOL

검색결과 203건 처리시간 0.036초

차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사 (MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1)

  • 장세명;최진철;한조영;신구환
    • 한국전산유체공학회지
    • /
    • 제21권2호
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

편재형 컴퓨팅을 위한 미세구조 에너지 하베스팅 시스템의 구조 설계 (Design of Micro-structured Small Scale Energy Harvesting System for Pervasive Computing Applications)

  • 민철홍;김태선
    • 한국전기전자재료학회논문지
    • /
    • 제22권11호
    • /
    • pp.918-924
    • /
    • 2009
  • In this paper, we designed micro-structured electromagnetic transducers for energy harvesting and verified the performance of proposed transducers using finite element analysis software, COMSOL Multiphysics. To achieve higher energy transduce efficiency, around the magnetic core material, three-dimensional micro-coil structures with high number of turns are fabricated using semiconductor fabrication process technologies. To find relations between device size and energy transduce efficiency, generated electrical power values of seven different sizes of transducers ($3{\times}3\;mm^2$, $6{\times}6\;mm^2$, $9{\times}9\;mm^2$, $12{\times}12\;mm^2$, $15{\times}15\;mm^2$, $18{\times}18\;mm^2$, and $21{\times}21\;mm^2$) are analyzed on various magnetic flux density environment ranging from 0.84 T to 1.54 T and it showed that size of $15{\times}15\;mm^2$ device can generate $991.5\;{\mu}W$ at the 8 Hz of environmental kinetic energy. Compare to other electromagnetic energy harvesters, proposed system showed competitive performance in terms of power generation, operation bandwidth and size. Since proposed system can generate electric power at very low frequency of kinetic energy from typical life environment including walking and body movement, it is expected that proposed system can be effectively applied to various pervasive computing applications including power source of embodied medical equipment, power source of RFID sensors and etc. as an secondary power sources.

예열온도조건에 따른 알루미늄 합금 주조재의 응고특성에 관한 연구 (A Study on Solidification Characteristics of Aluminum Alloy Casting Material by Pre-heated Temperature Conditions)

  • 윤천한;윤희성;오율권
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.7-12
    • /
    • 2012
  • In this study, the solidification characteristics inside the AC7A casting material was analyzed using the numerical analysis method and was verified using the experimental method by the pre-heated temperature conditions of metal casting device. For the numerical analysis, "COMSOL Multiphysics", the commercial code based on the finite element analysis(FEA), was used in order to predict the thermal deformation of the AC7A casting material including temperature, displacement and stress distribution. Also, in order to verify the results calculated by the numerical analysis, the experiment for temperature measurement inside the AC7A casting material was performed using the K-type thermocouple under the same condition of numerical analysis method. In the numerical results, thermal deformation inside AC7A casting material was well-suited for manufacturing products when the pre-heated temperatures of the metal casting device was $250^{\circ}C$. When the results of the temperature distribution were experimentally measured and were compared with those of the numerical result, it appeared that there was some temperature difference because of the latent heat by phase change heat transfer. However, the result of cooling temperature and patterns were almost similar except for the latent heat interval. The solidification characteristics was closely related to the temperature difference between the surface and inside of the casting.

실험설계법을 이용한 연료전지 분리판 냉각채널 설계 (A Design of the Cooling Channel in the Bipolar Plate of PEMFC Using Experimental Design Method)

  • 장하;권오정;오병수
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.545-552
    • /
    • 2015
  • The heat generation in PEMFC is proportional to the electrical power output. Therefore, when the fuel cell produced the maximum output, the maximum heat was generated. In order to maintain the performance of the fuel cell, thermal management is as important as pressure and humidity conditions of the reactive gas. In this study, considering the thermal management for the maximum output operation, the optimal cooling channel design specifications of bipolar plate are found for the highest cooling performance. In the current bipolar plate research, many studies focused on analyzing various factors individually but there is no more study on the interaction between design factors. In this study, the heat transfer was simulated by COMSOL Multiphysics with the main design factors which are designated shape, width and rib length. One of the experimental design methods, general full factorial design method, was used to analyze the main factor and interaction on average temperature and maximum temperature for the design specification of fuel cell bipolar plate. When analysis result shows that all of these three factors are highly important, it can confirm that the interaction occurs between the factors.

온도 조절형 고주파 시스템 및 식염수 분사를 고려한 전극도자절제술용 전극의 수치 모델 개발 (Development of Numerical Model of Electrode for Radiofrequency Catheter Ablation Considering Saline Irrigation and Temperature-controlled Radiofrequency System)

  • 안진우;김영진;이승아;정하철;김경아;차은종;문진희
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권6호
    • /
    • pp.285-290
    • /
    • 2017
  • Radiofrequency catheter ablation is the interventional therapy that be employed to eliminate cardiac tissue caused by arrhythmias. During radiofrequency catheter ablation, The thrombus can occur at electrode tip if the temperature of tissue and electrode is excess $100^{\circ}C$. To prevent this phenomenon, we investigated numerical model of electrode for radiofrequency catheter ablation considering saline irrigation and temperature-controlled radiofrequency system. The numerical model is based on coupled electric-thermal-flow problem and solved by COMSOL Multiphysics software. The results of the models show that the dimensions of the thermal lesion are increased if the flow rate of the saline irrigation and the set temperature are increased. The surface width characterized to determine the thermal lesion isn't need to measure in temperature-controlled radiofrequency system due to convective heat transfer by saline irrigation at tissue-electrode interface.

수치해석 모델링을 이용한 교차 흐름 미세유체 액적 생성 디바이스 채널 교차각이 액적 직경에 미치는 영향 (Effect of Intersection Angle of the Flow-focusing Type Droplet Generation Device Channel on Droplet Diameter by using Numerical Simulation Modeling)

  • 김상진;강형섭;양영석;김기범
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권3호
    • /
    • pp.61-68
    • /
    • 2015
  • In this paper, we studied the effects of intersection angles of the flow-foucusing type droplet generation device inlet channel on droplet diameter using numerical simulation modeling. We modeled different intersection angles with a fixed continuous channel width, dispersed channels width, orifices width, and expansion channels width. Numerical simulations were performed using COMSOL Multiphysics$^{(R)}$ to solve the incompressible Navier-Stokes equations for a two-phase flow in various flow-focusing geometries. Modeling results showed that an increase of the intersection angle causes an increase in the modification of the dispersed flow rate ($v^{\prime}{_d}$), and the increase of the modification of the continuous flow rate ($v^{\prime}{_c}$) obstructs the dispersed phase fluid flow, thereby reducing the droplet diameter. However, the droplet diameter did not decrease, even when the intersection angle increased. The droplet diameter decreased when the intersection angle was less than $90^{\circ}$, increased at an intersection angle of $90^{\circ}$, and decreased when the intersection angle was more than $90^{\circ}$. Furthermore, when the intermediate energy deceased, there was a decrease in the droplet diameter when the intersection angle increased. Therefore, variations in the droplet diameter can be used to change the intersection angle and fluid flow rate.

지중온도 경사를 이용한 효율적 지중에너지 이용 방안에 관한 연구 (A Study on Effective Energy Use of the Open Type Ground Heat Exchanger Using Underground Temperature Gradient)

  • 류형규;정민호;이병석;류효준;최현준;최항석
    • 설비공학논문집
    • /
    • 제26권9호
    • /
    • pp.401-408
    • /
    • 2014
  • This paper proposes an optimum operation method for open type ground heat exchangers. A series of TRTs and artificial heating/cooling operations were carried out while monitoring temperature in the hole of SCW. The ground temperature naturally increases with depth, but a switch between the cooling/heating mode results in a change in the distribution of ground temperature. The effect of the mode change was evaluated by performing LMTD and COMSOL multiphysics analysis for a reduced model with the depth of 150 m. As a result, in the cooling mode, the upstream operation is more efficient than the downstream operation and reduces EWT by $2.26^{\circ}C$. On the other hand, in the heating mode, the downstream operation is advantageous over the upstream operation and increases EWT by $3.19^{\circ}C$. The merit of the optimum operation will be enhanced for the typical dimension of SCW with a depth of 400~500 m. In the future, an open type ground heat exchanger system adopting the optimum operation with variation in the ground temperature will be used in practice.

공기 스테이지의 형상 오차가 운동정밀도에 미치는 영향 (Effect of Shape Error of an Air Stage on Motion Precision)

  • 류대원;이재혁;박상신;김규하
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.68-74
    • /
    • 2020
  • In this study, the effect of the shape error of a guideway on the movement of a stage that uses an air bearing is analyzed. The shape error of moving parts supported by the air bearing is known not to affect the vibrations of moving parts as much as the magnitude of the shape error. This is called the "averaging effect." In this study, the effect of shape error on a guideway, as well as the averaging effect of an air-bearing system, is analyzed theoretically using a dynamic-analysis program. The dynamic-analysis program applies a commercially available code in COMSOL and solves the Reynolds equation between the stage and the guideway, along with the equation of motion of the stage. The stage is modeled as a two-degree-of-freedom system. The shape error is applied to the film thickness function in the form of a sine wave. The stage movement is analyzed using the fast Fourier transform process. The eccentricity and tilting are found to be proportional to the amplitude of the shape error of the guideway. Stage vibrations are less than 10% of the amplitude of the shape error on the guideway. This means that the averaging effect of the air bearing is verified quantitatively. Moreover, if the air supply position matches the shape error in the guideway, there is a notable change in eccentricity and tilting.

REAL-TIME CORROSION CONTROL SYSTEM FOR CATHODIC PROTECTION OF BURIED PIPES FOR NUCLEAR POWER PLANT

  • Kim, Ki Tae;Kim, Hae Woong;Kim, Young Sik;Chang, Hyun Young;Lim, Bu Taek;Park, Heung Bae
    • Corrosion Science and Technology
    • /
    • 제14권1호
    • /
    • pp.12-18
    • /
    • 2015
  • Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.).

비행 시나리오에 따른 FSS 레이돔의 전파 투과 특성 변화 분석 (Analysis on Change in Electrical Transmission Characteristic about FSS Radome on Flight Scenario)

  • 김선휘;배형모;김지혁;이남규;남주영;박세진;조형희
    • 한국추진공학회지
    • /
    • 제23권6호
    • /
    • pp.11-20
    • /
    • 2019
  • 레이돔은 레이더를 외부 환경으로부터 보호하는 역할을 하며, 스텔스 기술의 일환으로 주파수 선택 표면이 레이돔에 적용되고 있다. 본 연구에서는 Jerusalem-cross(JSC) 형상이 적용된 주파수 선택 표면 레이돔에 대해 비행 시나리오 상 공력가열로 인해 미사일의 FSS 레이돔의 전파 투과 특성의 변화를 다루었다. 이 내용을 바탕으로 공력가열에 따른 전파 투과 특성을 레이돔의 위치에 따라, 시간에 따라 수치 해석적으로 분석하였다. 수치 해석적 연구로 상용 프로그램 ANSYS Fluent 15.0과 COMSOL Multiphysics 5.2를 사용하였다. 비행 시나리오 상 전파 투과 특성의 변화로 초기 대역폭에 대한 평균 투과율 수치가 최대 -14.3 dB까지 변화하는 것을 확인할 수 있었다.