• Title/Summary/Keyword: COMS-1

검색결과 208건 처리시간 0.027초

Improvement of Non-linear Estimation Equation of Rainfall Intensity over the Korean Peninsula by using the Brightness Temperature of Satellite and Radar Reflectivity Data (기상위성 휘도온도와 기상레이더 반사도 자료를 이용한 한반도 영역의 강우강도 추정 비선형 관계식 개선)

  • Choi, Haklim;Seo, Jong-Jin;Bae, Juyeon;Kim, Sujin;Lee, Kwang-Mog
    • Journal of the Korean earth science society
    • /
    • 제39권2호
    • /
    • pp.131-138
    • /
    • 2018
  • The purpose of this study is to improve the quantitative precipitation estimation method based on satellite brightness temperature. The non-linear equation for rainfall estimation is improved by analysing precipitation cases around the Korean peninsula in summer. Radar reflectivity is adopted the CAPPI 1.5 and CMAX composite fields that provided by the Korea Meteorological Agency (KMA). In addition, the satellite data are used infrared, water vapor and visible channel measured from meteorological imager sensor mounted on the Chollian satellite. The improved algorithm is compared with the results of the A-E method and CRR analytic function. POD, FAR and CSI are 0.67, 0.76 and 0.21, respectively. The MAE and RMSE are 2.49 and 6.18 mm/h. As the quantitative error was reduced in comparison to A-E and qualitative accuracy increased in compare with CRR, the disadvantage of both algorithms are complemented. The method of estimating precipitation through a relational expression can be used for short-term forecasting because of allowing precipitation estimation in a short time without going through complicated algorithms.

Integrated Ray Tracing Model for In-Orbit Optical Performance Simulation for GOCI (통합적 광추적 모델에 의한 해양탑재체 GOCI의 궤도 상 광학 성능 검증)

  • Ham, Seon-Jeong;Lee, Jae-Min;Kim, Seong-Hui;Yun, Hyeong-Sik;Gang, Geum-Sil;Myeong, Hwan-Chun;Kim, Seok-Hwan
    • Journal of Satellite, Information and Communications
    • /
    • 제1권2호
    • /
    • pp.1-7
    • /
    • 2006
  • GOCi (Geostationary Ocean Color Imager) is one of the COMS payloads that KARI is currently developing and scheduled to be in operation from around 2008. Its primary objective is to monitor the Korean coastal water environmental condition. We report the current progress in development of the integrated optical model as one of the key analysis tools for the GOCI in-orbit performance verification. The model includes the Sun as the emitting light source. The curved Earth surface section of 2500 km x 2500 km includingthe Korean peninsular os defined as a Lambertian scattering surface consisted of land and sea surface. From its geostationary orbit, the GOCI optical system observes the reflected light from the surfaces with varying reflectance representing the changes in its environmental conditions. The optical ray tracing technique was used to demonstrate the GOCI in-orbit performances such as red tide detection. The computational concept, simulation results and its implications to the on-going development of GOCI are presented.

  • PDF

Introduction of Acquisition System, Processing System and Distributing Service for Geostationary Ocean Color Imager (GOCI) Data (정지궤도 해색탑재체(GOCI) 데이터의 수신.처리 시스템과 배포 서비스)

  • Yang, Chan-Su;Bae, Sang-Soo;Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Han, Tai-Hyun;Yoo, Hong-Rhyong
    • Korean Journal of Remote Sensing
    • /
    • 제26권2호
    • /
    • pp.263-275
    • /
    • 2010
  • KOSC(Korea Ocean Satellite Center), the primary operational organization for GOCI(Geostationary Ocean Color Imager), was established in KORDI(Korea Ocean Research & Development Institute). For a stable distribution service of GOCI data, various systems were installed at KOSC as follows: GOCI Data Acquisition System, Image Pre-processing System, GOCI Data Processing System, GOCI Data Distribution System, Data Management System, Total Management & Control System and External Data Exchange System. KOSC distributes the GOCI data 8 times to user at 1-hour intervals during the daytime in near-real time according to the distribution policy. Finally, we introduce the KOSC website for users to search, request and download GOCI data.

Development the Geostationary Ocean Color Imager (GOCI) Data Processing System (GDPS) (정지궤도 해색탑재체(GOCI) 해양자료처리시스템(GDPS)의 개발)

  • Han, Hee-Jeong;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • Korean Journal of Remote Sensing
    • /
    • 제26권2호
    • /
    • pp.239-249
    • /
    • 2010
  • The Geostationary Ocean Color Imager (GOCI) data-processing system (GDPS), which is a software system for satellite data processing and analysis of the first geostationary ocean color observation satellite, has been developed concurrently with the development of th satellite. The GDPS has functions to generate level 2 and 3 oceanographic analytical data, from level 1B data that comprise the total radiance information, by programming a specialized atmospheric algorithm and oceanic analytical algorithms to the software module. The GDPS will be a multiversion system not only as a standard Korea Ocean Satellite Center(KOSC) operational system, but also as a basic GOCI data-processing system for researchers and other users. Additionally, the GDPS will be used to make the GOCI images available for distribution by satellite network, to calculate the lookup table for radiometric calibration coefficients, to divide/mosaic several region images, to analyze time-series satellite data. the developed GDPS system has satisfied the user requirement to complete data production within 30 minutes. This system is expected to be able to be an excellent tool for monitoring both long-term and short-term changes of ocean environmental characteristics.

GEO-KOMPSAT-2 Laser Ranging Time Slot Analysis (정지궤도복합위성 레이저 레인징 가능 시간대 해석)

  • Park, Bongkyu;Choi, Jaedong;Lee, Sang-Ryool
    • Journal of Aerospace System Engineering
    • /
    • 제12권1호
    • /
    • pp.10-16
    • /
    • 2018
  • In 2018 and 2019, GEO-KOMPSAT-2A and GEO-KOMPSAT-2B will be launched in order to succeed the COMS mission. The two satellites will be collocated in $128.25{\pm}0.05$ degrees East. For precise ranging and orbit determination, the GEO-KOMPSAT-2B will be equipped with LRA (Laser Retroreflector Assembly) and SLR (Satellite Laser Ranging) systems will be utilized. This systems are located in Geochang. In this case, the laser beam emitted from the SLR station can cause problems in terms of safety of optical payloads and image quality. As a solution of this possibility, the laser ranging will be done during the night time when the shutters of the optical payloads remain closed. Still, the optical payload of the GEO-KOMPSAT-2A is not safe from the laser beam because its optical payload shall continue its mission for 24 hours a day. In order to handle this problem, the laser ranging shall be limited to time slots when the angular distance between two satellites observed from the Geochang SLR station is large enough. In this paper, through orbit simulations, the characteristics of variation of the angular distance between the two satellites is analyzed to figure out the time slots when laser ranging is allowed.

Current Status and Results of In-orbit Function, Radiometric Calibration and INR of GOCI-II (Geostationary Ocean Color Imager 2) on Geo-KOMPSAT-2B (정지궤도 해양관측위성(GOCI-II)의 궤도 성능, 복사보정, 영상기하보정 결과 및 상태)

  • Yong, Sang-Soon;Kang, Gm-Sil;Huh, Sungsik;Cha, Sung-Yong
    • Korean Journal of Remote Sensing
    • /
    • 제37권5_2호
    • /
    • pp.1235-1243
    • /
    • 2021
  • Geostationary Ocean Color Imager 2 (GOCI-II) on Geo-KOMPSAT-2 (GK2B)satellite was developed as a mission successor of GOCI on COMS which had been operated for around 10 years since launch in 2010 to observe and monitor ocean color around Korean peninsula. GOCI-II on GK2B was successfully launched in February of 2020 to continue for detection, monitoring, quantification, and prediction of short/long term changes of coastal ocean environment for marine science research and application purpose. GOCI-II had already finished IAC and IOT including early in-orbit calibration and had been handed over to NOSC (National Ocean Satellite Center) in KHOA (Korea Hydrographic and Oceanographic Agency). Radiometric calibration was periodically conducted using on-board solar calibration system in GOCI-II. The final calibrated gain and offset were applied and validated during IOT. And three video parameter sets for one day and 12 video parameter sets for a year was selected and transferred to NOSC for normal operation. Star measurement-based INR (Image Navigation and Registration) navigation filtering and landmark measurement-based image geometric correction were applied to meet the all INR requirements. The GOCI2 INR software was validated through INR IOT. In this paper, status and results of IOT, radiometric calibration and INR of GOCI-II are analysed and described.

Outer Space Activities and an Observation of Related Laws of Korea (국내 우주활동과 관련법 소고)

  • Park, Won-Hwa
    • The Korean Journal of Air & Space Law and Policy
    • /
    • 제24권2호
    • /
    • pp.163-186
    • /
    • 2009
  • The missile technology and its development in south Korea have been restrained to the limit of 180 km by America which instead provided to Korea with security protection. In the same vein, America pressured South Korea to abort its nuclear weapons program so as to prevent another possible military encounter that can easily develop into a war between South and North Korea. This restraint was a bit relaxed when South Korea joined the Missile Technology Control Regime (MTCR) in 2001 whereby the limit was 300 km. The situation of South Korea is in much contrast with its neighbor, North Korea, which has fired Taepo Dong 1 and Taepo Dong 2 to put its alleged satellite respectively into the Earth orbit. The range of this rocket believed to be reaching more than 5,500 km, a range of the intercontinental ballistic missile, without any rein. South Korea that has just geared its full powers for its outer space industry, with the current space projects of putting its satellites into the low Earth orbit, will in future put its satellite into the geostationary orbit, 36,000 km above the Earth. To do so, such restraint had better be resolved. Korean space industry, as it is alike in other countries, started with putting and manufacturing sounding rockets, producing satellites but relying on foreign launching facilities, and learning launching capacities. Experiencing three time launchings of KITSAT, the current satellite projects of Korea are undertaken as follows: - Koreasat - STSAT - Komsat - MBSAT - COMS (Communication, Ocean, and Meteorological Satellite) Koreans waked up to the things of outer space in 2008 with the first Korean astronaut Li So-yeon, a lady bio systems engineer. Although the first Korean made rocket in cooperation with a Russian company to fire last August 2009 was a failure, it should be considered as an inevitable process for future endeavors. There are currently three outer space related laws of Korea: Aerospace Industry Development Promotion Act 1987, Outer Space Development Promotions Act 2005, and Space Damage Compensation Act 2008. The first two stemming from the two different ministries are, however, overlapping in many aspects and have some shortcomings to be improved.

  • PDF

Empirical Estimation and Diurnal Patterns of Surface PM2.5 Concentration in Seoul Using GOCI AOD (GOCI AOD를 이용한 서울 지역 지상 PM2.5 농도의 경험적 추정 및 일 변동성 분석)

  • Kim, Sang-Min;Yoon, Jongmin;Moon, Kyung-Jung;Kim, Deok-Rae;Koo, Ja-Ho;Choi, Myungje;Kim, Kwang Nyun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • 제34권3호
    • /
    • pp.451-463
    • /
    • 2018
  • The empirical/statistical models to estimate the ground Particulate Matter ($PM_{2.5}$) concentration from Geostationary Ocean Color Imager (GOCI) Aerosol Optical Depth (AOD) product were developed and analyzed for the period of 2015 in Seoul, South Korea. In the model construction of AOD-$PM_{2.5}$, two vertical correction methods using the planetary boundary layer height and the vertical ratio of aerosol, and humidity correction method using the hygroscopic growth factor were applied to respective models. The vertical correction for AOD and humidity correction for $PM_{2.5}$ concentration played an important role in improving accuracy of overall estimation. The multiple linear regression (MLR) models with additional meteorological factors (wind speed, visibility, and air temperature) affecting AOD and $PM_{2.5}$ relationships were constructed for the whole year and each season. As a result, determination coefficients of MLR models were significantly increased, compared to those of empirical models. In this study, we analyzed the seasonal, monthly and diurnal characteristics of AOD-$PM_{2.5}$model. when the MLR model is seasonally constructed, underestimation tendency in high $PM_{2.5}$ cases for the whole year were improved. The monthly and diurnal patterns of observed $PM_{2.5}$ and estimated $PM_{2.5}$ were similar. The results of this study, which estimates surface $PM_{2.5}$ concentration using geostationary satellite AOD, are expected to be applicable to the future GK-2A and GK-2B.