• Title/Summary/Keyword: COMS-1

Search Result 208, Processing Time 0.031 seconds

DEVELOPMENT OF ON-BOARD SOFTWARE FOR COMS GEOSTATIONARY OCEAN COLOR IMAGER

  • Park, Su-Hyun;Koo, Cheol-Hae;Kang, Soo-Yeon;Yang, Koon-Ho;Choi, Seong-Bong
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.257-259
    • /
    • 2006
  • The Communication Ocean Meteorological Satellite (COMS) is a geostationary satellite being developed by Korea Aerospace Research Institute. Geostationary Ocean Color Imager (GOCI) is one of the payloads embarked on the COMS satellite. It acquires ocean images around Korea in 8 visible spectral bands with a spatial resolution of about 500 m. The acquired data are used to provide forecasting and now casting of the ocean state. The GOCI operations are controlled by the satellite embedded software, i.e. on-board software. This paper introduces the GOCI payload of the COMS satellite and describes the control software for the GOCI.

  • PDF

COMS THRUSTER SET SELECTION FOR WHEEL OFFLOADING

  • Park, Bong-Kyu;Yang, Koon-Ho;Lee, Sang-Cherl;Park, Young-Woong
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.191-195
    • /
    • 2006
  • This paper discusses wheel offloading approaches of COMS which has a single side solar array system for the accommodation of the optical payloads. First of all, in an effort to reduce fuel consumption and reflect practical implementation point of view, thruster sets for wheel offloading are proposed based on numerical analyses taking into account the COMS configuration. In this analysis, it is assumed that the wheel offloading is conducted twice a day. Secondly, in order to evaluate the effectiveness of the proposed thruster sets, orbit simulations have been conducted for several wheel offloading approaches and compared.

  • PDF

A Study on Establishment of Appropriate Observation Time for Estimation of Daily Land Surface Temperature using COMS in Korea Peninsula (천리안 위성 자료를 활용한 한반도의 일별 지면 온도 산정을 위한 적정 관측시간 설정 연구)

  • Lee, Yong Gwan;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.37-46
    • /
    • 2016
  • This study is to estimate COMS (Communication, Ocean and Meteorological Satellite) daily land surface temperature (LST) of Korea Peninsula from 15 minutes interval COMS LST (COMS LST-15) satellite data. Using daily observed LST data of Automated Agriculture Observing System (AAOS) 11 stations from January 2013 to May 2015, the COMS daily LST was compared and validated. For the representative time for daily mean LST value from COMS LST-15, the time of 23 : 45 and 0:00 showed minimum deviations with AAOS daily LST. The time zone from 23 : 45 to 1:15 and from 7 : 30 to 9 : 45 showed high determination coefficient (R2) of 0.88 and 0.90 respectively. The daily COMS LST by averaging COMS LST-15 of the day showed R2 of 0.83. From the 5 cases of results, the COMS daily LST could be extracted from the average LST by using 15 minutes data from 7 : 30 to 9 : 45.

MI2U CONTROL FLIGHT SOFTWARE DESIGN AND DEVELOPMENT IN COMS

  • Kang, Seo-Yeon;Park, Su-Hyun;Koo, Cheol-Hae;Yang, Koon-Ho;Choi, Seong-Bong
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.271-273
    • /
    • 2006
  • In this paper, we describe the MI2U ORB function which is a part of the flight software executed on SCU and controls MI2U/MI which is one of three payloads on COMS. The MI2U ORB function manages MI2U/MI redundancy and reconfiguration, monitors MI2U/MI equipment, performs FDIR, and provides the routing service of commands from Ground/IP (Interpreted Program) through the current used 1553 channel. The MI2U hardware achieves the interface between the SCU and the MI. The MI2U is connected to SCU through MIL-STD-1553B system bus. The MI2U has the internal redundancy but is used in cold redundancy. The MI2U ORB function considers that they are not expected to be simultaneously switched on. The connection combination between MI2U and MI is electrically cross-strapped. However the MI2U ORB function considers only two combinations (MI2U A + MI 1, MI2U B + MI 2). Other combinations can be manually achieved by ground in case of the emergency case.

  • PDF

Technical Heritage of UK Chemical Propulsion Systems and COMS Bipropellant Propulsion System (영국산 화학추진시스템의 기술이력과 통신해양기상위성 이원추진제 추진시스템)

  • HAN, Cho Young
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.28-36
    • /
    • 2008
  • The technology relevant to a bipropellant propulsion system is quite new one in Korea, which is being transferred for the first time, with development of COMS propulsion system. It hasn't ever attempted before, and hasn't got any general idea itself as well, in Korea. The technical heritage of UK bipropellant propulsion pertinent to COMS propulsion system is scrutinised mainly. Furthermore the strong possibility of COMS CPS for the moon explorer mission is rationalised on the basis of the history of successful predecessors.

  • PDF

Preliminary EMC Analysis between the COMS and the GEO Launch Vehicles (통신해양기상위성과 정지궤도 발사체와의 전자파 적합성 해석)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.439-445
    • /
    • 2008
  • In this paper, the preliminary EMC analysis process between the Communication, Ocean and Meteorological Satellite (COMS) and Geostationary Earth Orbit (GEO) launch vehicles in the frequency range [1MHz-47MHz] is described. The considered launch vehicles are arian V, sea Launch, land Launch, atlas III&V, delta IV, proton M/breeze M, soyuz, HII-A and Angara. The launch vehicle Radiated Emission (RE) specifications have been compared to COMS satellite Radiated Susceptibility (RS) limits. The COMS RS limits are the RS qualification levels of COMS units during launch. As a result, The radiated emission levels of arian V, sea launch, atlas III&V, delta IV, proton M/breeze M, HII-A and angara are compliant with COMS RS limits. The negative margins appear between land launch or soyuz launch vehicle RE and COMS RS. Then, if the land launch or soyuz is chosen by the customer, The tests should be performed at satellite level in order to demonstrate the compatibility with respect to launch vehicles specifications.

PRELIMINARY COMS AOCS DESIGN FOR OPTIMAL OPTICAL PAYLOADS OPERATIONS

  • Park, Young-Woong;Park, Keun-Joo;Lee, Hun-Hei;Ju, Gwang-Hyuk;Park, Bong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.290-293
    • /
    • 2006
  • COMS (Communication, Ocean and Meteorological Satellite) shall be operated with two remote sensing payloads, MI (Meteorological Imager) and GOCI (Geostationary Ocean Color Imager). Since both payloads have rotating mechanisms, the dynamic coupling between two payloads is very important considering the pointing stability during GOCI operation. In addition, COMS adopts a single solar wing to improve the image quality, which leads to the unbalanced solar pressure torque in COMS. As a result, the off-loading of the wheel momentum needs to be performed regularly (2 times per day). Since the frequent off-loading could affect MI/GOCI imaging performance, another suboptimal off-loading time needs to be considered to meet the AOCS design requirements of COMS while having margin enough in the number of thruster actuations. In this paper, preliminary analysis results on the pointing stability and the wheel off-loading time selection with respect to MI/GOCI operations are presented.

  • PDF

COMS METEOROLOGICAL IMAGER SPACE LOOK SIDE SELECTION ALGORITHM

  • Park, Bong-Kyu;Lee, Sang-Cherl;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.100-103
    • /
    • 2008
  • COMS(Communication, Ocean and Meteorological Satellite) has multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. MI has 4 IR and 1 visible channel. In order to improve the quality of IR image, two calibration sources are used; black body image and cold space look data. In case of COMS, the space look is performed at 10.4 degree away from the nadir in east/west direction. During space look, SUN or moon intrusions are strictly forbidden, because it would degrade the quality of collected IR channel calibration data. Therefore we shall pay attention to select space look side depending on SUN and moon location. This paper proposes and discusses a simple and complete space look side selection logic based on SUN and moon intrusion event file. Computer simulation has been performed to analyze the performance of the proposed algorithm in term of east/west angular distance between space look position and hazardous intrusion sources; SUN and moon.

  • PDF

OVERVIEW OF COMS GROUND SYSTEM AT METEOROLOGICAL SATELLITE CENTER OF KMA

  • Lee, Hyun-Kyoung;Lee, Bong-Ju;Lee, Yong-Sang;Shim, Jae-Myun;Suh, Ae-Sook;Kim, Hong-Sic;Je, Chang-Eon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.159-162
    • /
    • 2006
  • This paper describes the ground system for COMS (Communication, Ocean, and Meteorological Satellite), the first Korean multi-purposed geostationary satellite, at MSC (Meteorological Satellite Center) in Korea. The overview of COMS MI (Meteorological Imager) will be introduced as well. KMA would implement mission planning for COMS MI operation and receive, process, interpret, disseminate, and archive MI data operationally for domestic and foreign user groups. Major missions of COMS MI are mitigation of natural hazard such as typhoon, dust storm, and heavy rain, and short-term warning of severe weather to protect human health and commerce. Moreover, research of climate variability and long-term changes will be supported. In accordance with those missions, the concept and design of COMPASS (COMS operation and meteorological products application service system), the ground system for COMS MI in MSC, have been setting up since 2004. Currently, COMPASS design is being progressed and will have finished the end of 2006. The development of COMPASS has three phases: first phase is development of fundamental COMPASS components in 2007, second phase is to integrate and test all of the COMPASS components in 2008, and the last phase is to operate COMPASS after COMS In-Orbit Tests in 2009.

  • PDF

Discovery of a New Mechanism to Release Complex Molecules from Icy Grain Mantles around Young Stellar Objects

  • Hoang, Thiem;Tram, Le Ngoc
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.70.4-70.4
    • /
    • 2019
  • Complex organic molecules (COMs) are increasingly observed in the environs of young stellar objects (YSOs), including hot cores/corinos around high-mass/low-mass protostars and protoplanetary disks. It is widely believed that COMs are first formed in the ice mantle of dust grains and subsequently released to the gas by thermal sublimation at high temperatures (T>100 K) in strong stellar radiation fields. In this paper, we report a new mechanism that can desorb COMs from icy grain mantles at low temperatures (T<100K), which is termed rotational desorption. The rotational desorption process of COMs comprises two stages: (1) ice mantles on suprathermally rotating grains spun-up by radiative torques (RATs) are first disrupted into small fragments by centrifugal stress, and (2) COMs and water ice then evaporate rapidly from the tiny fragments (i.e., radius a <1nm) due to thermal spikes or enhanced thermal sublimation due to increased grain temperature for larger fragments (a>1 nm). We discuss the implications of rotational desorption for releasing COMs and water ice in the inner region of protostellar envelopes (hot cores and corinos), photodissociation regions, and protoplanetary disks (PPDs). In shocked regions of stellar outflows, we find that nanoparticles can be spun-up to suprathermal rotation due to supersonic drift of neutral gas, such that centrifugal force can be sufficient to directly eject some molecules from the grain surface, provided that nanoparticles are made of strong material. Finally, we find that large aggregates (a~ 1-100 micron) exposed to strong stellar radiations can be disrupted into individual icy grains via RAdiative Torque Disruption (RATD) mechanism, which is followed by rotational desorption of ice mantles and evaporation of COMs. In the RATD picture, we expect some correlation between the enhancement of COMs and the depletion of large dust grains in not very dense regions of YSOs.

  • PDF