• Title/Summary/Keyword: COMS/GOCI

Search Result 88, Processing Time 0.02 seconds

COMS CADU DATA GENERATION FOR COMS IMPS TEST

  • Seo, Seok-Bae;Ahn, Sang-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.88-91
    • /
    • 2008
  • The COMS IMPS (Communication Ocean and Meteorological Satellite IMage Pre-processing Subsystem) is developed for image pre-processing of COMS. For a test of the COMS IMPS, 7 support software are developed in KARI GS using simulated MI/GOCI WB (Wide-Band) data; COMS Fill Adder, MI (Meteorological Imager) CADU generator, GOCI (Geostationary Ocean Colour Imager) CADU generator, COMS CADU combiner, MI SD (Sensor Data) analyzer, GOCI SD analyzer, and COMS DM (Decomposition Module) test harness. This paper explains functions of developed support software and the COMS IMPS test using those software.

  • PDF

DEVELOPMENT OF ON-BOARD SOFTWARE FOR COMS GEOSTATIONARY OCEAN COLOR IMAGER

  • Park, Su-Hyun;Koo, Cheol-Hae;Kang, Soo-Yeon;Yang, Koon-Ho;Choi, Seong-Bong
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.257-259
    • /
    • 2006
  • The Communication Ocean Meteorological Satellite (COMS) is a geostationary satellite being developed by Korea Aerospace Research Institute. Geostationary Ocean Color Imager (GOCI) is one of the payloads embarked on the COMS satellite. It acquires ocean images around Korea in 8 visible spectral bands with a spatial resolution of about 500 m. The acquired data are used to provide forecasting and now casting of the ocean state. The GOCI operations are controlled by the satellite embedded software, i.e. on-board software. This paper introduces the GOCI payload of the COMS satellite and describes the control software for the GOCI.

  • PDF

Applicability of Vegetation Indices from Terra MODIS and COMS GOCI Imageries (Terra MODIS 위성영상과의 비교를 통한 COMS GOCI 위성영상의 식생지수 적용성 평가)

  • Park, Jin Ki;Kim, Bong Seop;Oh, Si Young;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.47-55
    • /
    • 2013
  • The objective of this study is to evaluate the applicability of Communication, Ocean, and Meteorological Satellite (COMS) Geostationary Ocean Color Imager (GOCI) vegetation indices on a quantitative analysis. For evaluation, the vegetation indices such as RVI, NDVI and SAVI were extracted by using COMS GOCI and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) imageries. The 4,000 points using simple random sampling (SRS) method were randomly extracted from land areas except ocean to compare the vegetation indices from two images. The results of linear regression showed that the regression coefficients of RVI, NDVI, and SAVI between COMS GOCI and Terra MODIS were 0.66~0.82, 0.71~0.83, and 0.71~0.83, respectively. Especially, the regression coefficients of RVI (r=0.85), NDVI (r=0.91) and SAVI (r=0.91) were strongly related from September 2011 to January 2012. Thus, COMS GOCI can be substituted for particular periods and it needs to verify additionally.

PRELIMINARY COMS AOCS DESIGN FOR OPTIMAL OPTICAL PAYLOADS OPERATIONS

  • Park, Young-Woong;Park, Keun-Joo;Lee, Hun-Hei;Ju, Gwang-Hyuk;Park, Bong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.290-293
    • /
    • 2006
  • COMS (Communication, Ocean and Meteorological Satellite) shall be operated with two remote sensing payloads, MI (Meteorological Imager) and GOCI (Geostationary Ocean Color Imager). Since both payloads have rotating mechanisms, the dynamic coupling between two payloads is very important considering the pointing stability during GOCI operation. In addition, COMS adopts a single solar wing to improve the image quality, which leads to the unbalanced solar pressure torque in COMS. As a result, the off-loading of the wheel momentum needs to be performed regularly (2 times per day). Since the frequent off-loading could affect MI/GOCI imaging performance, another suboptimal off-loading time needs to be considered to meet the AOCS design requirements of COMS while having margin enough in the number of thruster actuations. In this paper, preliminary analysis results on the pointing stability and the wheel off-loading time selection with respect to MI/GOCI operations are presented.

  • PDF

Scheduling North-South Mirror Motion between Two Consecutive Meteorological Images of COMS

  • Lee, Soo-Jeon;Jung, Won-Chan;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.26-31
    • /
    • 2008
  • As a multi-mission GEO satellite, Communication, Ocean, and Meteorological Satellite (COMS) is scheduled to be launched in the year 2009. COMS has three different payloads: Ka-band communication payload, Geostationary Ocean Color Imager (GOCI) and Meteorological Imager (MI). Among the three payloads, MI and GOCI have several conflict relationships; one of them is that if MI mirror moves vertically larger than 4 Line Of Sight (LOS) angle while GOCI is imaging, image quality of GOCI becomes degraded. In this paper, MI scheduling algorithm to prevent GOCI's image quality degradation will be presented.

  • PDF

Introduction to COMS Geostationary Ocean Color Imager

  • Kang Gumsil;Kim Jongah;Myung Hwan-Chun;Yeon Jeong-Heum;Kang Song-Doug;Youn Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.108-111
    • /
    • 2005
  • The Communication Ocean, Meteorological Satellite (COMS) as the one of the national space program has been developed by Korea Aerospace Research Institute (KARl). The Geostationary Ocean Color Imager (GOCI) is one of the main payloads ofCOMS which will provide consistent monitoring of ocean-colour around the Korean Peninsula from geostationary platforms. The ocean color observation from geostationary platform is required to remedy the coverage constraints imposed by polar orbiting platforms. In this paper the main characteristics of GOCI are described and compared with the current ocean color sensors. The GOCI will provide the measurement data of 6 visible channels and 2 nearinfrared channels (40Onm - 900nm). The high radiometric sensitivity is essential of ocean color sensor because of the weak water leaving radiance.

  • PDF

Vignetting Analysis of GOCI Optical System

  • Yeon, Jeoung-Heum;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.195-198
    • /
    • 2007
  • GOCI(Geostationary Ocean Color Imager) is the core paryload of the geostationary satellite COMS(Communication, Ocean and Meteological Satellite) for ocean monitoring. It is scheduled to be launched at the end of 2008. GOCI observes ocean color around the Korean Peninsula over $2500km{\times}2500km$ area. Whole field of view is divided into 16 solts and scan mechanism enables to point each slot position. Tilted two-axis scan method is used to observe entire field of view with great pointing stability. Vignetting of the optical system appears when the partial obscuration by intermediate optical components occurs. It leads to the variation of the illumination in the image and gradual fading near the edge of the field. It should be prohibited for the stable radiometric performances. In this work, vignetting analysis of GOCI optical system is performed. For the systematic approach, GOCI optical system is divided into scan mechanism part and telescope part. Vignetting analysis of each part is performed and each result is combined for the overall vignetting performances. The analyzed results can be applied to the selection of slot acquisition angle of scan mechanism to minimize vignetting effects.

  • PDF

ERROR ANALYSIS FOR GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.187-190
    • /
    • 2007
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The nonlinear radiometric model for GOCI will be validated through ground test. The GOCI radiometric calibration is based on on-board calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). In this paper, the GOCI radiometric error propagation is analyzed. The radiometric model error due to the dark current nonlinearity is analyzed as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

Analysis of Non-linearity Characteristic of GOCI (COMS 해양탑재체의 비선형성 특성 분석)

  • Kang, Geum-Sil;Youn, Heong-Sik
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. In this study, the radiometric model of GOCI, which is constructed based on the functional model of sub-system, is introduced. Non-linearity for each channel is analyzed in terms of linear gain and nonlinear gain by using the radiometric model. The non-linearity characteristic is validated by using test data which have been achieved during ground test at payload level. The non-linearity $G^3$/b shows identical characteristic for all channels.

  • PDF

COMS Normal Operation for Earth Observation Mission

  • Cho, Young-Min
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.337-349
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service on $128.2^{\circ}$ East of the geostationary orbit since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first one-year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.