• Title/Summary/Keyword: COMPOSITES

Search Result 9,277, Processing Time 0.033 seconds

Interlaminar Fracture Toughness of CFRP Laminates with Carbon Non-Woven Tissue Having Different Weights (무게가 상이한 탄소부직포가 삽입된 CFRP적층판의 층간파괴인성)

  • Cheong, Seong-Kyun
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.43-48
    • /
    • 2009
  • For the practical use of improved interlaminar fracture toughness by interleaving carbon non-woven tissue (CNWT), intelaminar fracture toughnesses of CFRP laminates with CNWT having different weights were experimentally investigated. A suitable weight of interleaved CNWT in CFRP laminates was discussed with Mode I and Mode II tests. Mode I and Mode II interlaminar fracture toughnesses (GIC and GIIC) were obtained by DCB and ENF tests. Six kinds of specimens with CNWT were prepared. The weights of CNWT per square meter for six types of specimens are $8g/m^2,\;10g/m^2,\;12g/m^2,\;16g/m^2,\;20g/m^2$, and $24g/m^2$, respectively. The mean GIC and GIIC values of six kinds of specimens were not substantially different from one another. Compared with the CFRP specimen, the mean GIC values of six kinds of specimens were slightly decreased. But the mean GIIC values increased tremendously at least twice by interleaving CNWT. It seems that there is no interrelationship between the interlaminar fracture toughnesses (GIC and GIIC) and the interleaving CNWT weights. Consequently, it would be desirable to use the CNWT of $8g/m^2$ among the six kinds of CNWTs to take advantage of the interlaminar fracture toughness improved by interleaving CNWT, because the CNWT of $8g/m^2$ is a lightweight and low-priced material.

A Study on the Low Speed Impact Response and Frictional Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabrics (전단농화유체를 함침한 케블라 직물의 저속충격 거동 및 마찰특성 연구)

  • Lee, Bok-Won;Lee, Song-Hyun;Kim, Chun-Gon;Yoon, Byung-Il;Paik, Jong-Gyu
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.15-24
    • /
    • 2008
  • In this study, shear thickening fluid (STF) filled with rigid nano silica particles was impregnated in plain woven Kevlar fabrics to improve the impact resistance performance. The nano silica particles with an average diameter of 100nm, 300nm, and 500nm were used to make shear thickening fluid to estimate the effect of particle size on the impact behavior of STF impregnated Kevlar fabrics. The yam pull-out and frictional tests were conducted to estimate the effect of impregnated STF on the frictional characteristics. The test results showed that the friction forces were dramatically increased at the STF onset shear strain rates that were measured in preliminary rheology tests. The low speed impact tests were performed using the drop test machine. The results showed that the impregnated STF improved the impact resistance performance of the Kevlar fabrics in terms of the impact energy absorption and the deformation. It has been shown through tests that the impregnated STF affects the interfacial friction which contributes to improve the energy absorption in the Kevlar fabrics. Especially, the impregnation of the STF with the smaller particle size into the Kevlar fabrics showed the better performance in impact energy absorption.

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Evaluation on Adiabatic Property for Vehicular Sandwich Composite Structure (차체 구조용 샌드위치 복합소재 단열 특성 평가)

  • Lee Sang Jin;Oh Kyung Won;Jeong Jong Cheol;Kong Chang duk;Kim Jeong Seok;Cho Se Hyun
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Experimental investigation on heat transfer ratio was firstly performed with three types of sandwich panels such as the Carbon/Epoxy Skin-Aluminum Honeycomb and Balsa Core Sandwich Panel of 37mm thickness, the Carbon/Epoxy Aluminum Skin-Honeycomb Core Sandwich Panel of 57mm thickness (including insulator) and the Carbon/Epoxy Skin-Aluminum Honeycomb Core Sandwich Panel of 37mm thickness based on the KS F 2278:2003(Insulation test method of windows). In additional to this investigation, experimental tests were also done for evaluation of heat transportation ratio with the Aluminum Skin- Aluminium Honeycomb Sandwich Panels of 27mm and 35mm thickness, and Aluminum Skin-Foaming Aluminum Sandwich Panel of 27mm thickness by the KS F2277:2002 (Insulation measuring method of construction component-Calibration heat box method or protective heat box method). In this study, it was found that the larger net heat transfer cross sectional area between the skin and the sandwich core is given, the higher heat transportation ratio occurs. It was also found that the hybrid type insulation had better insulation characteristics compared to the non-hybrid type insulation.

Fabrication and Electromechanical Behaviors of a SWNT/PANi Composite Film Actuator (탄소나노튜브/도전성폴리머 복합재 엑츄에이터의 제조 및 특성실험)

  • Zhang, Shuai;Kim, Cheol
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.7-11
    • /
    • 2006
  • The improved SWNTs/PANi composite actuator films applicable to an artificial muscle were fabricated successfully using a new process of manufacture that consists of 90% pure single-walled carbon nanotubes (SWNT) and chemical polymerization. PANi is electrically conducting polyaniline polymer. The conductivities of the composite SWNTs/PANi film-type actuators and the pure PANi films fabricated were measured as 56.15 S/cm and 17.38 S/cm, respectively, by the 4-prove method. The conductivity of the composite actuator is 3.2 times higher than the pure PANi film. The fabricated composite actuator showed higher conductivity than any other similar ones. The quality of samples was investigated by an electron scanning microscope (SEM). To measure the actuating strains, a specially designed beam balance apparatus was developed and strains of the composite actuators was measured by a laser displacement sensor subjected to electric currents. During the operation, the sample was soaked in the $NaNO_3$ solution and the sine-wave voltage in the range of $+1V{\sim}-1V$ was applied. The length of the composite actuator changed from $l_0=12.690$ mm to $l_1=12.733$ so that the change of length was l=0.043 mm and the strain was 0.34 %. This is a very high strain for this kind of a composite actuator. Other result reported by Tahhan showed 0.23 % strain, so that the present result is improved by 48%.

Bending Performances and Collapse Mechanisms of Light-weight Aluminum-GERP Hybrid Square Tube Beams (경량화 알루미늄-GFRP 혼성 사각관 보의 굽힘성능 및 붕괴 메커니즘)

  • Lee, Sung-Hyuk;Kim, Hyung-Jin;Chang, Young-Wook;Choi, Nak-Sam
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.8-16
    • /
    • 2007
  • Bending collapse of light-weight square tubes used for vehicle structure components is a dominant failure mode in oblique collision and rollover of vehicles. In this paper bending performances of aluminum-GFRP hybrid tube beams were evaluated in relation with bending deformation behavior and energy absorption characteristics. Aluminum/GFRP hybrid tube beams fabricated by inserting adhesive film between prepreg and metal layer were used in the bending test. Failure mechanisms of hybrid tubes under a bending load were experimentally investigated to analyze the bending performance as a function of ply orientation and composite layer thickness. Ultimate bending moments and energy absorption capacity of hybrid tube beams were obtained from the measured load-displacement corves. It was found that aluminum/GFRP hybrid tubes could be converted to rather stable collapse mode showing excellent energy absorption capacity in comparison to the pure aluminum tube beams. In particular, the hybrid tube beam with $[0^{\circ}/90^{\circ}]s$ composite layer showed a large improvement by about 78% in energy absorption capacity and by 29% in specific energy absorption.

Effect of Nano-sized Calcium-silicate-hydrate (C-S-H) Crystals on Cement Hydration (나노 크기 칼슘-실리케이트-하이드레이트(C-S-H) 결정이 시멘트 수화에 미치는 영향 분석)

  • Gyeong-Tae Kim;Su-Ji Woo;Sung-Won Yoo;Young-Cheol Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.153-160
    • /
    • 2023
  • In this study, nano-sized C-S-H crystals were synthesized using the liquid phase reaction method and their properties were investigated. The synthesized C-S-H crystals were added to the cement composite in suspension form to determine their effect on the hydration properties of the cement. The amount of chemical admixture was varied to obtain nano-sized C-S-H crystals with optimal agglomerated morphology, and SEM photographs were analyzed. A cleaning process was added to remove harmful substances other than the synthesiz ed C-S-H crystals. It was found that the concentration of harmful substances was reduced in the case of C-S-H crystals subjected to the cleaning process. The synthesized C-S-H suspensions were prepared with and without the cleaning process, and cement composites were prepared with the cement weight content as the main variable. The effect of C-S-H crystals on the initial hydration properties of the cement was confirmed by microhydration heat analysis. In addition, mortar specimens were prepared to measure the compressive strength over time. The test results showed that the nano-sized C-S-H crystals act as nucleation sites in the cement paste to promote the early hydration of the cement and increase the early compressive strength.

Molding Quality Evaluation on Composite Laminate Panel for Railway Vehicle through Cure Monitoring using FBG Sensors (광섬유 FBG 센서기반 성형 모니터링을 통한 철도 차량용 복합재 내장재 패널의 성형 품질 평가)

  • Juyeop Park;Donghoon Kang
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.186-192
    • /
    • 2023
  • Recently, in the field of railway vehicles, interest in the use of composite materials for weight reduction and transportation efficiency is increasing. Accordingly, research and commercialization development to apply composite materials to various vehicle parts are being actively conducted, and evaluation is conducted centering on post-measurement such as mechanical performance evaluation of finished products to verify quality when composite materials are applied. However, the analysis of heat and stress generated during the molding process of composite materials, which are factors that greatly affect manufacturing quality, is insufficient. Therefore, in this study, in order to verify the molding quality of composite parts for railway vehicles, the molding quality analysis was conducted for the two types of composite interior panels (laminate panel and sandwich panel) that are most actively used. To this end, temperature and strain changes were monitored during the molding process by using an FBG fiber optic sensor, which is easy to apply to the inside of the composite, and the residual strain value generated after molding was completed was measured. As a result, it was confirmed that overheating and excessive residual stress did not occur, thereby verifying the excellent molding quality of the composite interior panel for railway vehicles.

Development of Homogenization Data-based Transfer Learning Framework to Predict Effective Mechanical Properties and Thermal Conductivity of Foam Structures (폼 구조의 유효 기계적 물성 및 열전도율 예측을 위한 균질화 데이터 기반 전이학습 프레임워크의 개발)

  • Wonjoo Lee;Suhan Kim;Hyun Jong Sim;Ju Ho Lee;Byeong Hyeok An;Yu Jung Kim;Sang Yung Jeong;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.205-210
    • /
    • 2023
  • In this study, we developed a transfer learning framework based on homogenization data for efficient prediction of the effective mechanical properties and thermal conductivity of cellular foam structures. Mean-field homogenization (MFH) based on the Eshelby's tensor allows for efficient prediction of properties in porous structures including ellipsoidal inclusions, but accurately predicting the properties of cellular foam structures is challenging. On the other hand, finite element homogenization (FEH) is more accurate but comes with relatively high computational cost. In this paper, we propose a data-driven transfer learning framework that combines the advantages of mean-field homogenization and finite element homogenization. Specifically, we generate a large amount of mean-field homogenization data to build a pre-trained model, and then fine-tune it using a relatively small amount of finite element homogenization data. Numerical examples were conducted to validate the proposed framework and verify the accuracy of the analysis. The results of this study are expected to be applicable to the analysis of materials with various foam structures.

Structural Optimization of 3D Printed Composite Flight Control Surface according to Diverse Topology Shapes (다양한 위상 형상에 따른 3D 프린트 복합재료 조종면의 구조 최적화)

  • Myeong-Kyu Kim;Nam Seo Goo;Hyoung-Seock Seo
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2023
  • When designing ships and aircraft structures, it is important to design them to satisfy weight reduction and strength. Currently, studies related to topology optimization using 3D printed composite materials are being actively conducted to satisfy the weight reduction and strength of the structure. In this study, structural analysis was performed to analyze the applicability of 3D printed composite materials to the flight control surface, one of the parts of an aircraft or unmanned aerial vehicle. The optimal topology shape of the flight control surface for the bending load was analyzed by considering three types (hexagonal, rectangular, triangular) of the topology shape of the flight control surface. In addition, the bending strength of the flight control surface was analyzed when four types of reinforcing materials (carbon fiber, glass fiber, high-strength high-temperature glass fiber, and kevlar) of the 3D printed composite material were applied. As a result of comparing the three-point bending test results with the finite element method results, it was confirmed that the flight control surface with hexagonal topology shape made of carbon fiber and Kevlar had excellent performance. And it is judged that the 3D printed composite can be sufficiently applied to the flight control surface.