• Title/Summary/Keyword: COMPOSITES

Search Result 9,250, Processing Time 0.027 seconds

Behaviors of Mechanical Properties of Filament-Winding-Laminated Composites due to Environmental Aging (필라멘트 와인딩 복합재의 환경노화에 따른 기계적물성 평가)

  • Choi Nak-Sam;Yun Young-Ju;Lee Sang-Woo;Kim Duck-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.31-35
    • /
    • 2006
  • Degradation characteristics of filament-winded composites due to accelerated environmental aging have been evaluated under high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP did high reduction by 25% under the influence of high temperature and water while CFRP showed little degradation. However for water-immersed $90^{\circ}$ composites both CFRP and GFRP showed high reduction in tensile strength. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites.

  • PDF

Manufacturing and Mechanical Properties of Sisal Fiber Reinforced Hybrid Composites

  • Hui, Zhi-Peng;Sudhakara, P.;Wang, Yi-Qi;Kim, Byung-Sun;Song, Jung-Il
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.273-278
    • /
    • 2013
  • PLA/PP polymer blends in various ratios (PLA:PP = 9:1, 4:1, 3:1, and 1:1), and their composites (PLA:PP = 1:1) with sisal fiber (10, 15 and 20 wt%) were fabricated using MAPP as compatibilizer. The aim of the work was to reduce the cost of biodegradable composites as well as to improve the impact strength of PLA using PP, a relatively cheaper thermoplastic. The developed composites were characterized for their morphological and mechanical properties. The tensile strength and modulus of the blends were decreased with increasing PP content whereas the strain at break and impact strength are increased. The tensile strength, modulus and water absorption were increased for hybrid composites with increasing fiber content.

An Experimental Study on the Mechanical Properties of Fiber Reinforced Cement Composites Utilizing by-Products(II) (산업부산물을 활용한 섬유보강 시멘트 복합체의 역학적 특성에 관한 실험적 연구(II))

  • 박승범;윤의식;조청휘
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.144-149
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of carbon fiber reinforced silica fume.cement composites and light weight fly ash.cement composites are presented in this paper. The CF reinforced silica fume.cement composites using silica fume early strength cement were prepared with Pan-derived or Pitch-derived CF, and Lt. Wt, fly ash.cement composites using fly ash, early strength cement, perlite and a small amount of foaming agent. As the test results show, the flexural strength, toughness and ductility of CF reinforced silica fume .cement composites were remarkably increased by fiber contents. Also, the manufacturing process technology of Lt. Wt. fly ash.cement composites was developed and its optimum mix proportions were proposed. And the compressive and flexural strength of the fly ash.cement composites by hot water cured were improved even more than by moist cured, but are decreased by increasing fly ash replaced ratio for cement.

  • PDF

Fabrication and Application of Nano-Fibers for Korean Post-Textile Industry (나노섬유의 제조와 응용 및 한국의 차세대 섬유산업)

  • 이재락;박수진;김효중;정효진;지승용;김준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.3-6
    • /
    • 2003
  • In this work, poly(ethylene oxide) nanofibers were fabricated by electrospinning to prepare nanofibers-reinforced composites. And the PEO powders-impregnated composites were also prepared to compare with physicochemical properties of nanofibers-reinforced composites. Morphology and fiber diameter of PEO nanofibers were determined by SEM observation. Mechanical interfacial properties of the composites were investigated in fracture toughness tests and interlaminar shear strength (ILSS) test. As a result, the fiber diameter decreased in increasing applied voltage. However the optimum condition for the fiber formation was 15 ㎸, resulting from increasing of jet instability at high voltage and the prepared PEO nanofibers were useful in fiber reinforced composites. The PEO-based nanofibers-reinforced composites showed an improvement of fracture toughness factors ($K_{IC} and G_{ IC}$) and ILSS, compared to the composites impregnated with PEO powders. These results were noted that the nanofibers had higher specific surface area and larger aspect ratio than those of the powder, which played an important role in improving the mechanical interfacial properties of the composites.

  • PDF

Constitutive Equations for Three Dimensional Circular Braided Glass Fiber Reinforced Composites Using Cell Modeling Method (셀 방법을 이용한 3차원 원형 브레이드 유리 섬유 강화 복합 재료의 구성 방정식)

  • 이원오;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.71-74
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided composites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced composite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained fer two volume fractions.

  • PDF

Fabrication of Al/Al-SiC Composites by Thermal Spray Process (용사법에 의한 Al/Al-SiC 복합재료의 제조)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • Metal matrix composites(MMCs) reinforced with ceramic particulates are receiving increasing attention because their high specific strength, low coefficient of thermal expansion and excellent wear resistance. Especially, Al-based composites(AMCs) have been widely applied for the aerospace and automotive industries. Such composites are mainly fabricated by the cast, powder metallurgy and infiltration process. In this study, SiC particulate reinforced Al-based composites were fabricated by thermal spray process and their wear behavior were investigated. Composites with different spray parameter were fabricated by using flame spray apparatus. Microstructure and wear behavior of the composites were observed by scanning electron microscope(SEM) and electron probe micro-analysis(EPMA).

  • PDF

Fatigue modeling of chopped strand mat/epoxy composites

  • Shokrieh, M.M.;Esmkhania, M.;Taheri-Behrooz, F.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.231-240
    • /
    • 2014
  • In the present research, fatigue behavior of chopped strand mat/epoxy composites has been studied with two different techniques. First, the normalized stiffness degradation approach as a well-known model for unidirectional and laminated composites was utilized to predict the fatigue behavior of chopped strand mat/epoxy composites. Then, the capability of the fatigue damage accumulation model for chopped strand mat/epoxy composites was investigated. A series of tests has been performed at different stress levels to evaluate both models with the obtained results. The results of evaluation indicate a better correlation of the normalized stiffness degradation technique with experimental results in comparison with the fatigue damage accumulation model.

Hydrolysis Resistance and Mechanical Property Changes of Glass Fiber Filled Polyketone Composites Upon Glass Fiber Concentration

  • Kim, Sung Min;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Hydrolysis resistance and mechanical property changes of polyketone (POK)/glass fiber (GF) composites were investigated for GF concentrations varying between 30 and 50%. The hydrolysis resistance of GF filled POK and polyamide66 (PA66, hydrolysis resistant grade) composites were compared. As shown by the experimental results, increasing the immersion time of the composites in a monoethylene glycol (MEG)/water solution at $120^{\circ}C$ had no impact or resulted in slightly decreased mechanical properties such as the tensile strength, tensile modulus, and strain at break in case of POK composites, whereas the mechanical properties of PA66 composites showed a significant drop. Increasing GF concentrations increased the tensile strength, tensile modulus, flexural strength, and flexural modulus of POK composites; however, impact strength did not show significant changes. Hydrolysis mechanisms of POK and PA66 are discussed.

A study on the fracture toughness of seawater-absorbed carbon nanotube/epoxy/basalt composites

  • Kim, Man Tae;Rhee, Kyong Yop;Kim, Hyun Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.190-192
    • /
    • 2013
  • It has been demonstrated in a previous study that carbon nanotube (CNT)/epoxy/basalt composites produce better flexural properties than epoxy/basalt composites. In this study, mode I fracture tests were conducted using CNT/epoxy/basalt composites with and without seawater absorption in order to investigate the effect of the seawater absorption on the mode I fracture toughness ($G_{Ic}$) of the CNT/epoxy/basalt composites. The results demonstrated that the compliance of the seawater-absorbed specimen was larger than that of the dry specimen at the same crack length, while the opposite result was obtained for the fracture load. The $G_{Ic}$ value of the seawater-absorbed CNT/epoxy/basalt composites was approximately 20% lower than that of the dry CNT/epoxy/basalt composites.