• Title/Summary/Keyword: COMET

Search Result 483, Processing Time 0.021 seconds

The Impact of Cooking on the Antioxidative and Antigenotoxic Effects of Rice (호화과정이 백미, 현미, 발아현미의 항산화 및 항유전 독성 활성에 미치는 영향)

  • Kim, So-Yun;Seo, Bo-Young;Park, Eunju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.9
    • /
    • pp.1370-1377
    • /
    • 2013
  • Rice is widely grown in Asia and is one of the major dietary staples in the world. Also, rice contains antioxidants which can prevent from oxidative stress related diseases, including cancer, atherosclerosis, and diabetes. Because the rice is consumed cooked, the effect of the cooking process on the antioxidative and antigenotoxic properties of rice is lacking. The aim of this study was to determine the effects of cooking on the antioxidant and antigenotoxic effects of white rice (WR), brown rice (BR), and germinated brown rice (GBR). The antioxidant activities were measured for total phenolic content (TPC), DPPH radical scavenging activity (DPPH RSA), total antioxidant capacity (TRAP), and oxygen radical absorbance capacity (ORAC). The highest TPC was found in uncooked BR (18.4 mg gallic acid equivalent/100 g). After cooking, the TPC of WR significantly increased, while the TPC of BR and GBR were reduced by 47.7% and 36.7%, respectively. The $IC_{50}$ for DPPH RSA was not significantly different in uncooked rice, while the DPPH RSA of WR and GBR decreased after cooking and the DPPH RSA of BR significantly increased. TRAP values in BR and GBR increased after cooking, while the value of WR decreased. The ORAC values of uncooked WR, BR, and GBR were 5.3, 4.3, and $3.9{\mu}M$ trolox equivalent at the concentration of $50{\mu}g/mL$. After cooking, the ORAC value of BR remained unchanged, while the value of GBR increased and the value of WR decreased. The antigenotoxic activities of WR, BR, and GBR were determined by measuring the inhibitory effects of $H_2O_2$-induced DNA damage on human leukocytes using the comet assay. The results showed that all rice tested showed a significant antigenotoxic effect against oxidative stress, except for the cooked white rice. Overall, our results indicate the addition of brown rice and/or germinated brown rice to cooked white rice is a good option for improving the benefits of rice.

Changes in the constituents and UV-photoprotective activity of Astragalus membranaceus caused by roasting (황기의 볶음 조건에 따른 성분 및 자외선 광보호 활성 변화)

  • Park, Jeong-Yong;Lee, Ji Yeon;Kim, Hyung Don;Jang, Gwi Yeong;Seo, Kyung Hye
    • Journal of Nutrition and Health
    • /
    • v.52 no.5
    • /
    • pp.413-421
    • /
    • 2019
  • Purpose: Astragalus membranaceus (AM) is an important traditional medicinal herb. Pharmacological research has indicated that AM has various physiological activities such as antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, and hepatoprotective activities. The bioactive substances responsible for the physiological activities in AM, including many antioxidant substances, change during the roasting process. This study investigated and compared the changes in the antioxidant constituents of AM caused by roasting. Methods: DPPH (1,1-diphenyl-2-picryl hydrazyl) and $ABTS^+$ (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) radical scavenging activities and their total phenolic content (TPC) were measured. High-performance liquid chromatography (HPLC) analysis was performed to confirm any changes in the isoflavonoids of roasted AM (R-AM),. The cell viability of UVB-induced HDF (Human dermal fibroblast) cells treated with AM and R-AM extracts was investigated. The comet assay was used to examine the inhibitory effects of R-AM extracts on DNA damage caused by oxidative stress. Results: The DPPH and $ABTS^+$ radical scavenging activities were $564.6{\pm}20.9$ and $108.2{\pm}3.1$ ($IC_{50}$ value) respectively, from the 2R-AM. The total phenol content was $47.80{\pm}1.40mg$ GAE/g from the 1R-AM. The values of calycosin and formononetin, which are the known isoflavonoid constituents of AM, were $778.58{\pm}2.72$ and $726.80{\pm}3.45{\mu}g/g$ respectively, from the 2R-AM. Treatment of the HDF cells with R-AM ($50{\sim}200{\mu}g/mL$) did not affect the cell viability. Furthermore, the R-AM extracts effectively protected against UVB-induced DNA damage. Conclusion: The findings of this study indicate that R-AM increases its isoflavonoid constituents and protects against UVB-induced DNA damage in HDF cells.

Studies on the Biochemical Features of Soybean Seeds for Higher Protein Variety -With Emphasis on Accumulation during Maturation and Electrophoretic Patterns of Proteins- (고단백 대두 품종 육성을 위한 종실의 생화학적 특성에 관한 연구 -단백질의 축적과 전기영동 유형을 중심으로)

  • Jong-Suk Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.22 no.1
    • /
    • pp.135-166
    • /
    • 1977
  • Some biochemical features of varietal variation in seed protein and their implications for soybean breeding for high protein were pursued employing 86 soybean varieties of Korea, Japan, and the U.S.A. origins. Also, studied comparatively was the temporal pattern of protein components accumulation during seed development characteristic to the high protein variety. Seed protein content of the 86 soybean varieties varied 34.4 to 50.6%. Non-existence of variety having high content of both protein and oil, or high protein content with average oil content as well as high negative correlation between the content of protein and oil (r=-0.73$^{**}$) indicate strongly a great difficulty to breed high protein variety while conserving oil content. The total content of essential amino acids varied 32.82 to 36.63% and the total content of sulfur-containing amino acids varied 2.09 to 2.73% as tested for 12 varieties differing protein content from 40.0 to 50.6%. The content of methionine was positively correlated with the content of glutamic acid, which was the major amino acid (18.5%) in seed protein of soybean. In particular, the varieties Bongeui and Saikai #20 had high protein content as well as high content of sulfur-containing amino acids. The content of lysine was negatively correlated with that of isoleucine, but positively correlated with protein content. The content of alanine, valine or leucine was correlated positively with oil content. The seed protein of soybean was built with 12 to 16 components depending on variety as revealed on disc acrylamide gel electrophoresis. The 86 varieties were classified into 11 groups of characteristic electrophoretic pattern. The protein component of Rm=0.14(b) showed the greatest varietal variation among the components in their relative contents, and negative correlation with the content of the other components, while the protein component of Rm=0.06(a) had a significant, positive correlation with protein content. There was sequential phases of rapid decrease, slow increase and stay in the protein content during seed development. Shorter period and lower rate of decrease followed by longer period and higher rate of increase in protein content during seed development was of characteristic to high protein variety together with earlier and continuous development at higher rate of the protein component a. Considering the extremely low methionine content of the protein component a, breeding for high protein content may result in lower quality of soybean protein.n.

  • PDF