• Title/Summary/Keyword: COLOR

Search Result 25,556, Processing Time 0.052 seconds

Quality Characteristics of Apple Jangachi Manufactured by Farmhouse and Commercial Jangachi (농가생산 사과장아찌와 시판 장아찌의 품질 특성)

  • Oh, C.H.;Yang, J.H.;Kang, C.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.18 no.1
    • /
    • pp.79-91
    • /
    • 2016
  • Quality factors which characterize 11 kinds of farm-manufactured apple Jangachi and commercial Jangachi, have been studied in order to provide a guideline to improve the quality and marketing strategy of farm-manufactured pickled apples. Moisture content ranged from 74% to 84% and 81% to 91% in Doenjang Jangachi and vinegar Jangachi, respectively; 38% to 64% in Kochujang Jangachi; 57% to 64% in radish Kochujang Jangachi. Moisture content was 89% in Doenjang Jangachi. Even though moisture content of apple Kochujang Jangachi indicated 48% which is lower than that of radish Jangachi, it was higher than that of a persimmon pickled in Kochujang (38%) and that of Japanese apricot Jangachi (49%). pH and titratable acidity, two indicators used to determine the appropriate ripening period of Jangachi, were pH 3.4~5.6, 0.03~0.14%, respectively. The pH ranged from 5.2 to 5.6 in radish Jangachi; 3.4 to 4.1 in Cucumber Jangachi. pH of persimmon Jangachi, Japanese apricot Jangachi and apple Jangachi showed 4.1, 3.5 and 4.1, respectively. Compared with the pH of traditional Jangachi (3.03~5.36), pH of all of the above Jangachi fall into an appropriate range. The brix of apple Jangachi (30%) was 12% to 18% higher than that of Kochujang radish Jangachi, but it was relatively lower than that of persimmon Jangachi (39%) and that of Japanese apricot Jangachi (49%). Salinity of Jangachi varied depending on which marinating material was used. Salinity in the descending order according to each marinating material demonstrated Kanjang (6% to 13%), Doenjang (7%), Kochujang (3% to 4%). Salinity of apple Jangachi was 3.28% which was relatively lower than that of commercial Jangachi which used either Kanjang or Doenjang as its marinating material. Chromaticity test shows that the brightness value of apple Jangachi (54.70) was similar to that of cucumber Jangachi (50.86, 56.02); the redness value and yellowness of apple Jangachi (16.21 and 26.78) were higher than the redness value (7.27 to 11.23) and the yellowness value (10.62 to 14.69) of radish Kochujang Jangachi. Sensory Characteristics value of apple Jangachi, along with radish and cucumber Jangachi in its color, odor and taste (7.00, 7.50, 7.00, respectively) placed high on the list implying higher preference. However, overall preference value of apple Jangachi was 6.83 which was lower than that of Japanese apricot Jangachi or that of radish Jangachi. The result can be explained by the tendency of people preferring crispy Jangachi and points out that the texture of apple Jangachi needs to be improved to gain popularity. Furthermore, for increased sales of apple Jangachi as a niche product, more rigorous market testing is required.

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

Development of Seasonal Habitat Suitability Indices for the Todarodes Pacificus around South Korea Based on GOCI Data (GOCI 자료를 활용한 한국 연근해 살오징어의 계절별 서식적합지수 모델 개발)

  • Seonju Lee;Jong-Kuk Choi;Myung-Sook Park;Sang Woo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1635-1650
    • /
    • 2023
  • Under global warming, the steadily increasing sea surface temperature (SST) severely impacts marine ecosystems,such as the productivity decrease and change in marine species distribution. Recently, the catch of Todarodes Pacificus, one of South Korea's primary marine resources, has dramatically decreased. In this study, we analyze the marine environment that affects the formation of fishing grounds of Todarodes Pacificus and develop seasonal habitat suitability index (HSI) models based on various satellite data including Geostationary Ocean Color Imager (GOCI) data to continuously manage fisheries resources over Korean exclusive economic zone. About 83% of catches are found within the range of SST of 14.11-26.16℃,sea level height of 0.56-0.82 m, chlorophyll-a concentration of 0.31-1.52 mg m-3, and primary production of 580.96-1574.13 mg C m-2 day-1. The seasonal HSI models are developed using the Arithmetic Mean Model, which showed the best performance. Comparing the developed HSI value with the 2019 catch data, it is confirmed that the HSI model is valid because the fishing grounds are formed in different sea regions by season (East Sea in winter and Yellow Sea in summer) and the high HSI (> 0.6) concurrences to areas with the high catch. In addition, we identified the significant increasing trend in SST over study regions, which is highly related to the formation of fishing grounds of Todarodes Pacificus. We can expect the fishing grounds will be changed by accelerating ocean warming in the future. Continuous HSI monitoring is necessary to manage fisheries' spatial and temporal distribution.

Influence of Artificial Rainfall on Wheat Grain Quality During Ripening by Using the Speed-breeding System (세대단축시스템을 이용한 국내 밀 품종의 등숙기 강우에 의한 품질변이 평가)

  • Hyeonjin Park;Jin-Kyung Cha;So-Myeong Lee;Youngho Kwon;Jisu Choi;Ki-Won Oh;Jong-Hee Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.188-196
    • /
    • 2023
  • Wheat (Triticum aestivum L.) is an important crop in Korea, with a per capita consumption of 31.6 kg in 2019. In the southern region, wheat is grown after paddy rice, and it is harvested during the rainy season in mid-June. This timing, in combination with high humidity and untimely rainfall, activates the enzyme alpha-amylase, which breaks down starch in the wheat grains. As a result, sprouted grains have lower quality and value for flour. However, seeds that absorb water before sprouting are expected to maintain better quality. The aim of the study was to identify the critical period during wheat maturation when rainfall has the greatest impact on grain quality, to prevent price declines due to quality deterioration. Two wheat cultivars, Jokyoung and Hwanggeumal, were grown in a speed breeding room, and artificial rainfall was applied at different times after heading (30, 35, 40, 45, 50, and 55 days). The proportion of vitreous grains decreased from 40 to 55 days after heading (DAH). Both cultivars had chalky grain sections from 35 DAH, with Hwanggeumal having a higher proportion of vitreous grains. Starch degradation was observed using FE-SEM (Field Emission Scanning Electron Microscope) at 40 DAH for Jokyoung and 50 DAH for Hwanggeumal. Color measurements indicated increased L and E values from 40 DAH, with rain treatment at 55 DAH leading to a significant increase in L values for both cultivars. Ash content increased at 45 DAH, whereas SDSS decreased at 35 DAH. Overall, grain quality from 40 DAH until harvest was found to be affected to the greatest extent by direct exposure of the spikes to moisture. Red wheat showed better quality than white wheat. These findings have implications for the cultivation of high-quality wheat and can guide future research efforts in this area.

Growth stage-specific changes in fruiting body characteristics of Pleurotus spp. (생육시기에 따른 느타리류의 자실체 특성 변화)

  • Jae-San Ryu;Kyeong Sook Na
    • Journal of Mushroom
    • /
    • v.21 no.4
    • /
    • pp.254-260
    • /
    • 2023
  • The characteristics and spore production of Gonji7ho, Bunhong, and Sunjung fruiting bodies were assessed at different growth stages. The shape of the Pleurotus species fruiting body starts out short and small, then takes on a typical mushroom shape as it grows. Gonji7ho has a long stalk, Bunhong has a short stalk and a wide cap, and Sunjung's cap and stalk dimensions are intermediate. Each variety displayed deep color at the beginning of growth but became steadily lighter with continued growth. The shape of the linkage between the mushroom stalk and cap changed from an initial central position to a lateral position after the growing stage. Gonji7ho cap diameter increased 7-fold from 15.5 mm (5 days of growth) to 37.9 mm (9 days of growth). Growth rates for each growth day measured using the growth percentage of the previous day were 285.5% (5 → 6th day), 182.2% (6 → 7th day), 129.4% (7 → 8th day), and 103.8% (8 → 9th day). This trend was also observed in Bunhong and Sunjung, but Bunhong's growth rate was more rapid (4.9 fold on day 6, 2.7 fold on day 7) and continued to increase through day 9. Harvest yield, which is of greatest interest to farmers, displayed a similar trend spanning the growth period, as did cap diameter. Gonji7ho harvest yield increased rapidly until day 7 of growth (more than 177%), then growth slowed down beginning around day 8, and further decreased on day 9 (98%). Similar trends were observed in Bunhong and Sunjung. Bunhong showed characteristic rapid growth in harvest yield (4.9 fold compared to the previous day on day 6 and 2.7 fold on day 7), and the increase continued through day 9. A decrease in mushroom harvest yield commonly seen in the late growth stage is thought to be due to the death of some mushrooms and decomposition of cap tissue. Basidiospore content increased with number of growth days but decreased after day 8. Gonji7ho yielded the highest production on day 7 of growth, coinciding with harvest time, with 209,000,000 spores. This trend was also observed in Bunhong and Sunjung. These results will provide researchers with basal data and guide farmers in selecting the optimal harvest day.

Conservation Treatment and Study on Manufacturing Techniques of Jija Chongtong Gun in the Middle of Joseon Dynasty (조선 중기 제작된 지자총통의 보존처리와 제작기법 연구 -동아대학교 석당박물관 소장 보물 지자총통을 중심으로-)

  • Nam Dohyeon;Park Younghwan;Lee Jaesung
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.23-46
    • /
    • 2023
  • The Jija Chongtong Gun, owned by Seokdang Museum of Dong-A University, is a tubedstyle heavy weapon of the battlefield in the mid-Joseon Dynasty and is the second largest firearm after Cheonja Chongtong. The original surface color of the Jija Chongtong Gun was obscured by foreign substances and therefore it was judged that its condition requires the conservation treatment. For stable conservation treatment, gamma ray and X-ray non-destructive transmission surveys was conducted to determine the internal structure and conservation condition. And the component analysis on the material components and surface contaminants of Jija Chongtong Gun was conducted by utilizing the p-XRF component analysis, SEM-EDS component analysis, and XRD analysis. As a result of the gamma-ray and X-ray non-destructive transmission investigation, a large amount of air bubbles was observed inside Jija Chongtong Gun, and the part that appeared to be a chaplet by visual observation was not identified. As a result of gamma-ray and p-XRF component analysis, it was confirmed that Jija Chongtong Gun was bronze made of copper (Cu), tin (Sn), and lead (Pb) alloy. As a result of surface analysis of foreign substances using SEM-EDS, it was confirmed that the main components of white foreign substances were calcium (Ca), sulfur (S), and titanium (Ti). Titanium was presumed to be titanium dioxide (TiO2), the main component of white correction fluid. The red foreign substance was confirmed to contain barium (Ba) as its main ingredient, and was presumed to be barium sulfate (BaSO4), an extender pigment in paint. White and red contaminants, mainly composed of titanium and barium, are presumed to have been deposited on the surface in recent years. The yellow foreign substances were confirmed to be aluminum (Al) and silicon (Si), and were presumed to have originated from soil components. As a result of SEM-EDS and XRD component analysis, the white foreign substance was confirmed to be gypsum (CaS). Based on the results of component analysis, surface impurities were removed, stabilization treatment, and strengthening treatment were performed. During the conservation process, unknown inscriptions Woo (右), Byeong (兵), Sang (上), and Yi (二) were discovered through a portable microscope and precise 3D scanning. In addition, the carving method, depth, and width of the inscription were measured. Woo Byeong Sang is located above Happo Fortress in Changwon, and Yi can be identified as the second hill.

A Study of Su Shi(蘇軾)'s Philosophy and Garden Management - A Basic Study Focused on Baiheju(白鶴居) - (소식의 사상과 원림 경영 연구 - 백학거를 중심으로 한 기초 연구 -)

  • Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.4
    • /
    • pp.21-29
    • /
    • 2023
  • The Northern Song Dynasty, the heyday of cultural and artistic achievements, brought significant changes to the history of gardens in China. The developments and contemplations that had evolved during the previous Tang Dynasty became intertwined with literature, painting, and art, leading to garden being perceived as works of art. In particular, the emergence of Su Shi(蘇軾) that permeated literature and art during the Northern Song Dynasty, had an impact beyond individual garden creation, influencing the development of public gardens and the diversification of garden. His long exile periods served as an opportunity to understand and reflect the local culture and characteristics, influencing the development of the garden. This study focuses on the ideology of Su Shi(蘇軾) that managed various gardens, examining the relationship between his exlie life and ideology. To do so, the study examines the form of the literati's gardens managed by Su Shi(蘇軾), with a particular emphasis on the Baiheju(白鶴居) garden in Huizhou, revealing the following characteristics and values. First, Su Shi(蘇軾), who was proficient in the Three Houses: Confucianism, Buddhism, and Taoism, combined his philosophy and unique perspective techniques with the location and composition elements of Baiheju(白鶴居) to enjoy the landscape. Although the ancient residence has a simple form, it possesses expansiveness through the combination of internal and external views. The interior is designed to be perceived as a single space, but it allows overlapping experiences of space and simultaneous appreciation of different sceneries. On the other hand, the spatial layout incorporates a hierarchical order to establish a sense of order. Second, the garden reflects the local characteristics, featuring numerous tropical plants and presenting vibrant and contrasting colors with structures. The planting forms embrace the concept of "huosei seikou" (活色生香) to enhance the color harmoniously. Additionally, the garden incorporates the poet's spiritual world, projecting it onto the garden as a contemplative place for spiritual nourishment and exploration of the ideal realm. For the pursuit of serenity and profound contemplation, the selected plantings are simple yet distinctive, providing rhythm and depth to the garden space. Third, Baiheju(白鶴居) has undergone changes over the years, but fundamentally, the form and elements of the garden shaped by Su Shi(蘇軾)'s descendants persist, confirming its heritage value.

Plasma Cosmetic Container Suitability (플라즈마 화장품 용기 적합성)

  • Ha Hyeon Jo;You-Yeon Chun;Hyojin Heo;Sang Hun Lee;Lei Lei;Ye Ji Kim;Byeong-Mun Kwak;Mi-Gi Lee;Bum-Ho Bin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • For plasma cosmetics, it is important to ensure the long-term stability of plasma in the formulation. This study examined the suitability of containers for efficient plasma cosmetics development. By varying the surface area covered by the plasma, 4 cm2, 25 cm2, 75 cm2, and 175 cm2 containers were injected with cosmetic plasma, and the amount of nitric oxide (NO), the main active species of nitrogen plasma, was analyzed. As a result, the surface area and stability exposed to plasma tended to be inversely proportional, and it was most effective in a 4 cm2 container. Furthermore, 25 mm, 40 mm, and 50 mm vials were treated with plasma, which resulted in relative long-term stability of NO at 25 mm, a smaller surface area of the container exposed to air. Water mist and stratified mist were selected as cosmetic formulations, and NO plasma was injected into the water layer to observe the changes in formulation properties and the state of the injected NO plasma. In both formulations, the amount of NO plasma injected was about 1.5 times higher in the water phase mist than in the stratified mist, and the stratified mist gradually decreased with time and was found to disappear after 3 weeks. The stability of the nitrogen plasma was studied at low temperature (4 ℃), room temperature (25 ℃), and high temperature (37 ℃, 50 ℃). As a result, it was found that the water mist did not affect the stability, but the stratified mist observed a color change in the oil phase layer. Overall, this study demonstrates the container suitability of nitrogen plasma and suggests the importance of ensuring the stability of injected nitrogen plasma in cosmetic formulations.

Comparison of Carcass Characteristics, Meat Quality, and Sensory Quality Characteristics of Male Laying Hens, Meat-Type Chickens under Identical Rearing Conditions (동일 사육 조건에서 산란계 수평아리 및 육용계의 도체 특성, 계육 품질 및 관능적 특성 비교)

  • Woo-Do Lee;Hyunsoo Kim;Hee-Jin Kim;IkSoo Jeon;Jiseon Son;Eui-Chul Hong;Hye Kyung Shin;Hwan-Ku Kang
    • Korean Journal of Poultry Science
    • /
    • v.51 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • This study was conducted to evaluate the potential of using laying hens as meat type chickens. Male broiler (Ross 308, R3), laying hens (Hy-Line Brown, HL), and Korean native chickens (Hanhyup-3, H3) were used, and 100 heads of each were prepared. Carcass characteristics, meat quality, and sensory quality characteristics were compared as analysis items. The rearing environment and feed for all treatments were identical to the broiler rearing manual, and the lighting system was maintained at 23L:1D. Feed and water were provided ad libitum. The test ended when the average weight of each treatment group reached 1.5 kg, and individuals of similar weight were randomly selected and compared. As a result of this study, the live weight of the selected individuals was approximately 1.5 kg, which was similar for all treatments (P>0.05). However, carcass weight and ratio and breast meat production were highest in R3, while HL had higher ratios of legs, wings, and neck (P<0.05). The H3 group showed high pH and WHC levels and low cooking loss, and R3 improved chicken meat color (P<0.05). In particular, the fat content in meat was lowest in HL (P<0.01). Nucleic acid substances ATP, Hx, ADP, AMP, and INO were abundant in R3, and IMP content was highest in HL (P<0.05). In sensory evaluation, all treatments showed similar characteristics and overall preferences (P>0.05). Based on the findings, it appears that HL, a male laying hen, produces meat with unique characteristics such as low fat content and high IMP content.