• 제목/요약/키워드: COL3A1 Gene

검색결과 46건 처리시간 0.018초

COL3A1 유전자의 새로운 돌연변이 c.2931+2dupT가 확인된 혈관형 엘러스-단로스 증후군 1례 (A Case of Vascular Ehlers-Danlos Syndrome with Novel Mutation c.2931+2dupT in COL3A1 Gene)

  • 윤유민;김동찬;강민재
    • 대한유전성대사질환학회지
    • /
    • 제14권2호
    • /
    • pp.168-173
    • /
    • 2014
  • 혈관형 엘러스-단로스 증후군은 상염색체 우성 유전질환으로 COL3A1 유전자의 돌연변이로 인해 제 3형 콜라겐 합성이 결핍되면서 피부, 관절, 혈관, 폐, 내장 등에서 증상이 나타나는데 생명에 위협이 되는 합병증인 동맥 파열이나 장 천공과 같이 발생한 뒤에 진단이 늦게 내려지는 경우가 많다. 본 증례는 11세에 장천공 및 복막염의 수술력이 있는 16세 남아가 각각 운동과 경미한 손상 이후 발생한 두 차례의 근혈종으로 내원하여 시행한 COL3A1 유전자 검사에서 새로운 돌연변이 c.2931+2dupT가 발견되어 보고하는 바이다.

Hepatic Gene Expression Analysis of Gadolinium Chloride Treated Mice

  • Jeong, Sun-Young;Lim, Jung-Sun;Hwang, Ji-Yoon;Kim, Yong-Bum;Kim, Chul-Tae;Lee, Nam-Seob;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제2권1호
    • /
    • pp.21-28
    • /
    • 2006
  • Gadolinium chloride ($GdCl_{3}$) was known to block Kupffer cells and generally its toxicity study based on blocking these cells. Therefore, $GdCl_{3}$ frequently used to study toxic mechanisms of hepatotoxicants inducing injury through Kupffer cells. We also tried to investigate the effect of $GdCl_{3}\;on\;CCl_{4}$ toxicity, typical hepatotoxicants. Administration of $GdCl_{3}$ to mice significantly suppressed AST (asparatate amino transferase), ALT (alanine amino transferase) levels which were increased by $CCl_{4}$ treatment. However, $GdCl_{3}$ didn't inhibit the phagocytotic activity of Kupffer cells. Malondialdehyde (MDA) is a good indicator of the degree of lipid peroxidation. In this study, MDA increased by $GdCl_{3}$ administration not by $CCl_{4}$. To understand the toxicity of $GdCl_{3}$, we analyzed global gene expression profile of mice liver after acute $GdCl_{3}$ injection. Four hundred fifty two genes were differentially expressed with more than 2-fold in at least one time point among 3 hr, 6 hr, and 24 hr. Several genes involved in fibrogenesis regulation. Several types of pro-collagens (Col1a2, Col5a2, Col6a3, and Col13a1) and tissue inhibitor of metal-loproteinase1 (TIMP1) were up regulated during all the time points. Genes related to growth factors, chemokines, and oxidative stress, which were known to control fibrogenesis, were significantly changed. In addition, $GdCl_{3}$ induced abnormal regulation between lipid synthesis and degradation related genes. These data will provide the information about influence of $GdCl_{3}$ to hepatotoxicity.

Effectiveness of Krill Oil in Regulating Skin Moisture

  • Yoon-Seok Chun;Jongkyu Kim;Ji-Hoon Lim;Namju Lee;Sae-kwang Ku
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.359-368
    • /
    • 2023
  • This study aims to explore the impact of Krill Oil (KO, SuperbaTM Boost) on skin moisturization regulation. The research involved five groups: an intact control, a reference group (L-AA 100 mg/kg), and KO groups (400, 200, and 100 mg/kg), each comprising ten mice. Oral administration was conducted for 8 weeks (56 days), during which changes in body weight, hyaluronan, collagen type 1 (COL1), transforming growth factor-β1 (TGF-β1), ceramide, and water contents were analyzed in dorsal back skin tissue. Real-time PCR was employed to assess gene expression related to hyaluronic acid synthesis (HAS1, HAS2, HAS3), COL1 synthesis (COL1A1 and COL1A2), and TGF-β1. Results demonstrated that KO administration significantly increased hyaluronan content, hyaluronic acid synthesis (HAS1, HAS2, HAS3), COL1 content, COL1 synthesis (COL1A1 and COL1A2), TGF-β1 content, TGF-β1 mRNA expression, ceramide content, and water content in a concentration-dependent manner compared to the intact control. Importantly, no discernible disparities were noted between the KO and L-AA groups, even though they received equivalent oral dosages. This study accentuates the potential utility of exogenous KO in the regulation of skin moisture, thus positioning it as a promising avenue for the development of nutricosmetics. Future research endeavors should delve into the role of KO in safeguarding against both intrinsic and extrinsic aging-related skin manifestations, as well as its potential to ameliorate skin wrinkles, in conjunction with its moisturizing attributes.

Identification of novel susceptibility genes associated with bone density and osteoporosis in Korean women

  • Bo-Young Kim;Do-Wan Kim;Eunkuk Park;Jeonghyun Kim;Chang-Gun Lee;Hyun-Seok Jin;Seon-Yong Jeong
    • Journal of Genetic Medicine
    • /
    • 제19권2호
    • /
    • pp.63-75
    • /
    • 2022
  • Purpose: Osteoporosis is a common calcium and metabolic skeletal disease which is characterized by decreased bone mass, microarchitectural deterioration of bone tissue and impaired bone strength, thereby leading to enhanced risk of bone fragility. In this study, we aimed to identify novel genes for susceptibility to osteoporosis and/or bone density. Materials and Methods: To identify differentially expressed genes (DEGs) between control and osteoporosis-induced cells, annealing control primer-based differential display reverse-transcription polymerase chain reaction (RT-PCR) was carried out in pre-osteoblast MC3T3-E1 cells. Expression levels of the identified DEGs were evaluated by quantitative RT-PCR. Association studies for the quantitative bone density analysis and osteoporosis case-control analysis of single nucleotide polymorphism (SNPs) were performed in Korean women (3,570 subjects) from the Korean Association REsource (KARE) study cohort. Results: Comparison analysis of expression levels of the identified DEGs by quantitative RT-PCR found seven genes, Anxa6, Col5a1, Col6a2, Eno1, Myof, Nfib, and Scara5, that showed significantly different expression between the dexamethason-treated and untreated MC3T3-E1 cells and between the ovariectomized osteoporosis-induced mice and sham mice. Association studies revealed that there was a significant association between the SNPs in the five genes, ANXA6, COL5A1, ENO1, MYOF, and SCARA5, and bone density and/or osteoporosis. Conclusion: Using a whole-genome comparative expression analysis, gene expression evaluation analysis, and association analysis, we found five genes that were significantly associated with bone density and/or osteoporosis. Notably, the association P-values of the SNPs in the ANXA6 and COL5A1 genes were below the Bonferroni-corrected significance level.

Effects of 2-deoxy-D-glucose and quercetin on cytokine secretion and gene expression of type I collagen during osteoblastic differentiation in irradiated MC3T3-El cells

  • Song Haeng-Un;Ahn Hyoun-Suk;Lee Sang-Rae;Koh Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • 제35권4호
    • /
    • pp.191-198
    • /
    • 2005
  • Purpose: To characterize the effects of 2-deoxy-D-glucose (2DG) and quercetin (QCT) on cytokine secretion of IL-6, $TGF-\beta$ and gene expression of Col I in irradiated MC3T3-E1 cells Materials and Methods: The MC3T3-El cells were cultured in an a-MEM supplemented with 5mM 2DG or 10mM QCT and then the cells were incubated 12h before irradiation with 2, 4, 6, and 8Gy X-ray using a linear accelerator delivered at a dose rate of 1.5Gy/min. Level of IL-6 and $TGF-\beta$ was determined by ELISA. Also expression of Col I was examined by RT-PCR. Results: In accordance with the radiation dose, the amount of $TGF-\beta$ was not different in RA + QCT, but it showed a peak value in control and RA + 2DG at 4Gy on the 3rd day. However, all groups showed a decreasing tendency dose-dependently in RA+QCT on the 7th day (p<0.01). In accordance with the radiation dose, the amount of IL-6 increased dose-dependently in all groups on the 3rd day. On the 7th and 21st day, all groups showed peak values at 4Gy. RA+QCT showed a slightly increased amount of IL-6 at 2Gy, but it showed a slightly decreased amount at 4, 6, and 8Gy. In accordance with the period of culture after irradiation, the expression of Col I increased dose-dependently in RA+QCT. Conclusion: The result showed that QCT acted as radiosensitizer in the secretion of $TGF-\beta$ and gene expression of Col I during differentiation in irradiated MC3T3-E1 cells at the cellular level.

  • PDF

Analysis of Gene Expression in Cyclooxygenase-2-Overexpressed Human Osteosarcoma Cell Lines

  • Han, Jeong A.;Kim, Ji-Yeon;Kim, Jong-Il
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.247-253
    • /
    • 2014
  • Osteosarcoma is the most common primary bone tumor, generally affecting young people. While the etiology of osteosarcoma has been largely unknown, recent studies have suggested that cyclooxygenase-2 (COX-2) plays a critical role in the proliferation, migration, and invasion of osteosarcoma cells. To understand the mechanism of action of COX-2 in the pathogenesis of osteosarcoma, we compared gene expression patterns between three stable COX-2-overexpressing cell lines and three control cell lines derived from U2OS human osteosarcoma cells. The data showed that 56 genes were upregulated, whereas 20 genes were downregulated, in COX-2-overexpressed cell lines, with an average fold-change > 1.5. Among the upregulated genes, COL1A1, COL5A2, FBN1, HOXD10, RUNX2, and TRAPPC2 are involved in bone and skeletal system development, while DDR2, RAC2, RUNX2, and TSPAN31 are involved in the positive regulation of cell proliferation. Among the downregulated genes, HIST1H1D, HIST1H2AI, HIST1H3H, and HIST1H4C are involved in nucleosome assembly and DNA packaging. These results may provide useful information to elucidate the molecular mechanism of the COX-2-mediated malignant phenotype in osteosarcoma.

풋사과 추출물의 피부 보습 효과 (Skin Moisturizing Activity of Unripe Apple(Immature Fruit of Malus pumila) in Mice)

  • 박혜림;김재광;이재경;최범락;김종대;구세광;제갈경환
    • 한방안이비인후피부과학회지
    • /
    • 제35권4호
    • /
    • pp.63-74
    • /
    • 2022
  • Objectives : Skin aging is generally characterized by wrinkles, sagging, loss of elasticity roughness, pigmentation and dryness. This changes is caused by reducing the elements constituting the extracellular matrix contributing to the physiological properties of the skin, such as collagen fiber, elastic fiber, and hyaluronic acid. Adequate skin hydration is important to maintain normal skin function and reduce skin aging. The present study is objective to observe skin moisturizing effects of Unripe apple(UA, Immature fruit of Malus pumila Mill) in vivo and its underlying molecular mechanisms. Methods : ICR mice were orally administerd UA(100, 200 and 400mg/kg/day) for 8 weeks, and skin water contents and the expression of transforming growth factor (TGF)-𝛽1, ceramide, hyaluronan and collagen type I(COL1) were measured in dorsal back skin of the mice. Gene expression of hyaluronan synthase(HAS1, HAS2, HAS3), collagen synthase(COL1A1, COL1A2) and TGF-𝛽1 were also determined by realtime RT-PCR. Results : Skin water contents and the expression of TGF-𝛽1, ceramide, COL1 and hyaluronan were significantly increased in UA group(100, 200 and 400mg/kg/day) compared to vehicle control. The mRNA expression of HAS isoform(HAS1, HAS2, HAS3), COL1A1, COL1A2, and TGF-𝛽1 were also significantly increased by UA. Conclusions : UA has skin moisturizing effects and enhancement activities in skin function related components(COL1, hyaluronan, ceramide and TGF-𝛽1). These results suggested that UA can be a developing candidate for developing alternative skin protective agent or functional food ingredient.

Gene Expression Profiling of Doxifluridine Treated Liver, Small and Large Intestine in Cynomolgus (Macaca fascicularis) Monkeys

  • Jeong, Sun-Young;Park, Han-Jin;Oh, Jung-Hwa;Kim, Choong-Yong;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제3권2호
    • /
    • pp.137-144
    • /
    • 2007
  • The mechanism of cytotoxicity of doxifluridine, a prodrug fluorouracil (5-FU), has been ascribed to the misincorporation of fluoropyrimidine into RNA and DNA and to the inhibition of the nucleotide synthetic enzyme thymidylate synthase. Increased understanding of the mechanism of 5-FU has led to the development of strategies that increases its anticancer activity or predicts its sensitivity to patients. Using GeneChip?? Rhesus Macaque Genome arrays, we analyzed gene expression profiles of doxifluridine after two weeks repeated administration in cynomolgus monkey. Kegg pathway analysis suggested that cytoskeletal rearrangement and cell adhesion remodeling were commonly occurred in colon, jejunum, and liver. However, expression of genes encoding extracellular matrix was distinguished colon from others. In colon, COL6A2, COL18A1, ELN, and LAMA5 were over-expressed. In contrast, genes included in same category were down-regulated in jejunum and liver. Interestingly, MMP7 and TIMP1, the key enzymes responsible for ECM regulation, were overexpressed in colon. Several studies were reported that both gene reduced cell sensitivity to chemotherapy-induced apoptosis. Therefore, we suggest they have potential as target for modulation of 5-FU action. In addition, the expression of genes which have been previously known to involve in 5-FU pathway, were examined in three organs. Particularly, there were more remarkable changes in colon than in others. In colon, ECGF1, DYPD, TYMS, DHFR, FPGS, DUT, BCL2, BAX, and BAK1 except CAD were expressed in the direction that was good response to doxifluridine. These results may provide that colon is a prominent target of doxifluridine and transcriptional profiling is useful to find new targets affecting the response to the drug.

도홍사물탕(桃紅四物湯)이 골절 유합에 미치는 실험적 연구 (Experimental Study of Dohongsamul-tang (Taohongsiwu-tang) on Fracture Healing)

  • 하현주;오민석
    • 한방재활의학과학회지
    • /
    • 제30권2호
    • /
    • pp.47-66
    • /
    • 2020
  • Objectives The purpose of this study is to evaluate the bone healing effect of Dohongsamul-tang (Taohongsiwu-tang; DH) on femur fractured mice. Methods Mice were randomly divided into 4 groups (naive, control, positive control and DH). All groups except naive group were subjected to bone fracture on both hind limb femurs. Naive group received no treatment at all. Control group was fed with normal saline, and positive control group was orally medicated with tramadol. DH-treated group was orally medicated with DH. We analysed the levels of BMP2, COX2, Col2a1, Sox9, Runx2, and Osterix genes on 3, 7 and 14 days after fracture. Alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, creatinine, total cholesterol, and triglyceride levels were measured for safety assessment. Results In morphological, histological analysis, callus formation process of DH-treated group was faster than the control group. BMP2, Sox9 gene expression were significantly increased at 7 days after fracture compared to the control group. COX2, Col2a1 gene expression were significantly increased at 14 days after fracture compared to the control group. Total cholesterol was significantly increased by DH at 3 days. Triglyceride was significantly decreased by DH at 3, 7 days after fracture compared to the control group. Conclusions Dohongsamul-tang promoted bone healing process after fracture by stimulating the bone regeneration factors. And DH shows no hepatotoxicity, nephrotoxicity and serum lipid abnormality. In conclusion, it seems that DH helps to promote fracture regeneration after bone fracture by regulating gene expressions related to bone repair.

연골 재생에 대한 실크 단백질의 가능성 (The Possibility of Silk Protein to the Chondrogenesis)

  • 조유영;권해용;이광길;이희삼;전정우
    • 한국잠사곤충학회지
    • /
    • 제50권1호
    • /
    • pp.15-19
    • /
    • 2012
  • 최근 다양한 생체재료를 이용하여 연골재생과 관련한 많은 연구가 진행되고 있다. 실크단백질은 생체적합성이 뛰어나며, 우수한 기계적 강도를 가지고 있는 천연 고분자 물질로서 최근 생체재료로 사용하기위한 연구가 세계적으로 많이 이루어지고 있다. 본 연구는 실크단백질이 연골재생에 효과가 있는지를 확인하기위하여 수행되었다. 우리는 연골세포를 코뼈로부터 분리하고, 3종류의 배지 (DMEM, DMEM/F12, RPMI)와 서로 다른 농도의 ascorbic acid를 사용하여 최적 배양조건을 확립하였다. 그 결과 우리가 분리한 연골세포는 10% FBS와 $100{\mu}M$ ascorbic acid가 함유된 DMEM배지에서 가장 잘 생장하였다. 연골에 대한 실크의 영향을 관찰하기위해서, 실크 피브로인 용액을 제작하고 이를 멸균한것과 멸균하지 않은 것으로 구분하여 연골세포 배양 시 첨가하여 연골분화에 대한 마커인자인 제2형 콜라겐의 발현량을 측정하였다. 멸균하지 않은 실크 피브로인 첨가시 제2형 콜라겐의 발현량이 2.7배 증가하였으나, 멸균된 실크 피브로인의 첨가는 제2형 콜라겐의 발현량을 오히려 감소시켰다. 또한 실크 피브로인은 제10형 콜라겐의 발현을 증가시키는 것을 확인하였다. 이 효과는 특히 연골세포를 3차원 배양할 때 더 컸다. 본 연구결과를 통하여 우리는 연골을 재생하는데 있어서 실크 단백질을 가능성을 보았으며, 향후 연구에서 연골재생과 실크의 관계를 좀 더 정밀하게 파악하고자 한다.