• 제목/요약/키워드: COD removal

검색결과 1,129건 처리시간 0.023초

분말활성탄 접촉-응집에 의한 생활폐기물 및 산업폐기물 매립지 침출수의 처리 (Treatment of Leachate from Municipal Landfill and Industrial Landfill by PAC Adsorption-Coagulation)

  • 김수영;장덕;김영태
    • 상하수도학회지
    • /
    • 제11권4호
    • /
    • pp.110-117
    • /
    • 1997
  • Performances of combined adsorption and coagulation were evaluated as one of the options for pre-treatment or post-treatment of MSW landfills leachate and industrial landfill leachate. The COD and color removals of leachate from an old MSW landfill were 35% and 33% at an alum dose of 300mg/L with preceding PAC(powdered activated carbon) dose of 200mg/L, respectively. The COD and color removals of leachate from an young MSW landfill were 58% and 25% at an alum dose of 700mg/L and PAC dose of 500mg/L, respectively. The COD and color of biologically treated leachate from an industrial waste landfill were removed up to 32% and 68%, respectively, with pH control at addition of 500mgAlum/L and 1,000mgPAC/L. Adsorption and coagulation process with pH control showed better COD and color removals than the process without pH control for biologically treated leachate from an industrial waste landfill. The color removal was influenced greatly by pH control, while COD removal was not significant. No difference in removal efficiency was observed between adsorption-coagulation and coagulation-adsorption process. The COD removal was accomplished mainly by adsorption, while coagulation was a key mechanism of color removal. However, the mechanism of COD removal was obscure, when BOD/COD ratio was high. Maximum net increases in COD and color removals by the adsorption-coagulation process were respectively 45% and 46% compared with the unit process of adsorption or coagulation, although those removals depended on leachate characteristics. Thus, adsorption-coagulation process was considered to be effective for pre- and post-treatment of landfill leachate, and has distinct features of simple, flexible, stable and reliable operation against fluctuation leachate quality and flowrate.

  • PDF

접촉담화공정에 의한 폐수처이에 있어서의 제한요권에 관한 연구 (A Study on the Limiting Factors in Wastewater Treatment by Contact Oxidation Process)

  • 황상용;손종열;우완기
    • 환경위생공학
    • /
    • 제5권2호
    • /
    • pp.45-52
    • /
    • 1990
  • This study is to discuss limiting factors influenced on the removal efficiency of organic materials investigated using the polypropyrene biofilter which appropriate to attach micro-organism in order to apply the contact oxidation proce,:5. The results obtained in the experiment were as follows : 1. In the range o: pH 4.0~ 12.0 was obtained the removal efficiency of COD higher than 85% It was proved that variation of pH(4.0 ~ 12.0) was nothing to do with the removal efficiency of substrate in continuous reactor. 2. Temperature to obtain removal efficiency of COD higher than 85% was $10^{\circ}$ ~$40^{\circ}$. Removal efficiency of COD was no less than those at high temperature if MLVSS concentration was maintained 8,000~ 15,000 m/1. 3. In the continuous reactor, the volumetric loading of COD for removal efficiency higher than 95% had to be 0.5~1.5 kg COD/.d below. And then the HRT was Bhrs. 4. In comparison with the conventional activate sludge process, the contact oxidation process was excellent in removal efficiency, sludge production rate and maintenance.

  • PDF

BACC를 이용한 축산폐수의 암모니아성 질소 및 유기물의 제거 II. COD/N비가 질소 및 유기물 제거에 미치는 영향 (Removal of Ammonia Nitrogen and Organics from Piggery Wastewater Using BACC Process-II. Effect of COD/N on Removal of NItrogen and Organics)

  • 성기달;류원률;김인환;조무환
    • KSBB Journal
    • /
    • 제16권2호
    • /
    • pp.140-145
    • /
    • 2001
  • To treat piggery wastewater containing refractory compounds including nitrogen, physical treatments using zeolite and biological processes were investigated. In biogical treatment, the removal efficiencies of organics and nitrogen in bioreador using BACC (Biological Activated Carbon Cartridge) media filled with granule activated carbon were examined. The best removal efficiencies achieved for TKN and COD(sub)cr were 82% and 53% respectively, when zeolite dosage was 300 g/L. Specific nitrogen removal ability was 3.2 mg/g at a zeolite dosage of 50 g/L, whereas specific nitrogen removal ability was 1.8 mg/g at a zeolite dosage of 300 g/L. The increased of C/N ratio resulting from the removal of nitrogen using zeolite led to an increase in removal efficiency of organics. As C/N ratio was increased to 2.0, 2.44 and 6.58 at a HRT of 48 hours in a BACC bioreactor, removal efficiencies of COD(sub)cr were increased to 53.5%, 57.4% and 80.6%. The removal efficiency of wastewater using a zeolite dosage of 399 g/L was increased by 27.1% compared to that of control treatment.

  • PDF

A comparative study on applicability of nano-sized iron(II, III) oxide in ultrasonicated Fenton process

  • Sahinkaya, Serkan;Yakut, Sennur Merve
    • Environmental Engineering Research
    • /
    • 제25권1호
    • /
    • pp.36-42
    • /
    • 2020
  • Fenton process is one of the most effective advanced oxidation processes for the removal of pollutants from wastewater. In this study, while ferrous iron was used in conventional Fenton process (CFP); nano-sized iron(II, III) oxide was experienced in modified Fenton process (MFP) as a new catalyst alternative. In order to enhance their oxidation efficiencies, both CFP and MFP were combined with ultrasonication at 53 kHz fixed frequency. Thus, the influences of both catalyst iron species and ultrasonication on color and chemical oxygen demand (COD) removals from synthetic textile wastewater including Maxilon Red GRL 200% dyestuff were investigated experimentally. While the COD and color removal rates were found as 72.5% and 69.7% via CFP; they were 87% and 75.8% by ultrasonicated CFP, respectively. The color and COD removals were 40.6% and 64.8% via MFP, and 49.9 and 73.1% by ultrasonicated MFP, respectively. Therefore, it was found that the simultaneously usage of ultrasonication with CFP and MFP was improved the COD and color removal efficiencies and oxidation rates even at lower H2O2 dosages, compared to individual CFP and MFP. Moreover, the color and COD removal kinetics were also modelled mathematically and compared in the study.

생물전기화학기술을 이용한 하수처리장 방류수 수질개선 가능성 (Potential of a Bioelectrochemical Technology for the Polishing of Domestic Wastewater Treatment Plant Effluent)

  • 송영채;오경근
    • 한국물환경학회지
    • /
    • 제31권4호
    • /
    • pp.351-359
    • /
    • 2015
  • The study on the improvement of discharge water quality from domestic wastewater treatment plant (DWTP) was performed in a filter type bioelectrochemical system. The COD removal efficiency for a synthetic discharge water was about 88%, and the effluent COD was less than 5mg/L. The nitrification efficiency of the bioelectrochemical system was over 97%, but a considerable amount of the nitrogen was remained as nitrate form in the effluent. The total nitrogen removal efficiency was only around 30%. There are no significant differences in the removal of COD and nitrogen at 0.6 and 0.8V of the applied voltages between anode and cathode. The removal of COD and nitrogen in the system were quite stable when the HRT ranged from 60 to 15 minutes, and at 10 minutes of HRT, the nitrification efficiency was slightly decreased. The performance of the bioelectrochemical system has quickly recovered from the shocks in the influent due to high concentration of COD and nitrogen. For the effluent that discharged from the DWTP, the removal efficiencies of COD and total nitrogen from the bioelectrochemical system were 50 and 30%, respectively. Thus the bioelectrochemical system was a feasible process for further polishing the effluent quality from DWTP.

회분식 오존 공정에서 페놀의 분해 속도에 관한 연구 (A Study on the Decomposition Rate of Phenol in the Batch Type Ozonation)

  • 안재동;강동수
    • 한국환경보건학회지
    • /
    • 제23권4호
    • /
    • pp.127-132
    • /
    • 1997
  • The characteristics of the ozone treatments of phenol were studied in a laboratory scale wastewater treatment system. The ozone treatment of wastewater was carried out in a batch-type reactor. The initial pH of wastewater(7-10), volumetric flow rate(1-2l/min) and ozone concentration(20~30 mg/l) of aerating gas were considereal as experimental variables in the ozone treatment. Phenol was decomposed easily by the ozone in a batch treatment, where the rate determining step was the COD removal that is decomposition of intermediates formed by the ozonation of phenol. Phenol decomposition and COD removal could be expressed by the first order reaction for the phenol concentration and COD, respectively. Rate constants of phenol decomposition and COD removal increased with the initial pH, volumetric flow rate and ozone concentration of aeration gas. Under the present experimental condition, their relationships could be given by for the phenol decomposition $k'=4.46\times 10^{-9}[pH]_o ^{3.94}[O_3]^{1.42}Q_{O3}^{1.57}$ for the COD removal $k=2.46\times 10^{-10}[pH]_o ^{5.19}[O_3]^{1.15}Q_{O3}^{1.19}$

  • PDF

DAF(Dissolved Air Flotation)를 이용한 제지폐수의 COD, SS 및 탁도 제거 (COD, SS and Turbidity Removal of Paper Wastewater Using DAE(Dissolved Air Flotation))

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제31권4호
    • /
    • pp.246-253
    • /
    • 2005
  • The supernatant treatment of recovery process of raw materials of paper plant was studied using DAF (Dissolved Air Flotation) system. We investigated the removal efficiency (COD, SS and turbidity) of the DAF process. The effects of parameters such as A/S ratio, pressure, flotation conditions, coagulant concentration, mixing conditions, size and ratio of packing and nozzle type were examined. The results showed that the optimum A/S ratio and pressure were 0.058 and 4.5-5 atm, respectively. Injection times of pressurized water around 30 s and flotation times around 10 min appeared to be optimal for the DAF operation. Anion polymer addition improved the removal of COD, SS and turbidity. The smaller size and the more packing ratio were enhanced the removal efficiencies. The order of performance of nozzle was full cone > flat > assemble type.

Evaluation of Effective Process Operation for the Texitile Dyeing Wastewater by Ferrous Solution and Hydrogen Peroxide

  • Lee, Sang Ho;Moon, Hey Jin
    • 한국환경과학회지
    • /
    • 제13권11호
    • /
    • pp.987-991
    • /
    • 2004
  • The purpose of this research is to evaluate the removal efficiencies of COD$\_$Cr/ and color for the dyeing wastewater by the different dosages of ferrous solution and H$_2$O$_2$ in Fenton process. In the case of H$_2$O$_2$ divided dosage for the Fenton's reagent 7:3 of H$_2$O$_2$ was more effective than 3:7 to remove COD$\_$Cr/ and color. The results showed that COD$\_$Cr/ was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand color was removed by Fenton oxidation rather than Fenton coagulation. The removal mechanism of COD$\_$Cr/ and color was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However, the final removal efficiency of COD$\_$Cr/ and color was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide.

표면개질 담체를 이용한 충전탑 반응기에서 유기물 제거 및 미생물 부착 특성 (Characteristics of Organic Compounds Removal and Microbe Attachment in Packed Bed Column Reactor Using Surface-modified Media)

  • 선용호
    • KSBB Journal
    • /
    • 제27권3호
    • /
    • pp.145-150
    • /
    • 2012
  • This study was accomplished using packed bed column reactors that contain nonsurface-modified polypropylene media and surface-modified media from hydrophobic surface property into hydrophilic property by ion beam irradiation. The objectives of this research was investigated the characteristics of organic compounds removal and microbe attachment from sewage of school cafeteria in these reactors. In 736.8 mg/L of the average inflow $COD_{Cr}$ concentration the reactors with and without surface modification showed 81.8% and 70.3% of average $COD_{Cr}$ removal efficiencies, respectively, which proves the $COD_{Cr}$ removal efficiency of surface-modified media reactor is higher than that of nonsurface-modified media reactor. After 90 days, there were maximum differences between modified system and non-modified system. In that time the maximum removal efficiency of $COD_{Cr}$ was 96.5% in modified system and was 85.2% in non-modified system that showed removal efficiency of surface-modified media system is 11.3% higher than that of nonsurface-modified media system. The average removal efficiency of SS was 80.4% for the surface modified system and 61.6% for the non-modified system under same condition. Also, the reactor of surface-modified media has advantage on microbe attachment and biofilm formation.

미세조류의 Methane 발효특성

  • 강창민;최명락
    • 한국미생물·생명공학회지
    • /
    • 제24권5호
    • /
    • pp.597-603
    • /
    • 1996
  • This study was carried out to examine degradation characteristics of microalgae Chlorella vulgaris in methane fermentation. We measured COD and VS reduction, gas and methane productivity, VFA (volatile fatty acid), respectively. Then we calculated material balance and hydrolysis rates in soluble and solid material. The substrate concentration was controlled from 14 gCOD$_{cr}$/l to 64 gCOD$_{cr}$/l in batch cultures, and HRT (hydraulic retention time) controlled from 2 days to 30 days in continuous experi- ments. The results were as follows. In batch culture, accumulated gas productivity increased with the increase of the substrate concentration. The SS and VSS was removed all about 30% increase of substrate concentration and the most of the degradable material removed during the first 10 days. The curve of gas and methane production rate straightly increased until substrate concentration is 26 gCOD$_{cr}$/l. In continuous culture experiments, the removal rates at HRT 10days were 20% for total COD and TOC, respectively. At longer HRT, there was no increase in the removal efficiency. At HRT 15 days, the removal rates were 30% for SS and VSS, respectively. Soluble organic materials were rapidly degraded, and so there was no accumulated. Soluble COD concentration was not increase regardless of HRT-increasing. That meaned the hydrolysis was one of the rate-limiting stage of methane fermentation. The first-order rate constants of hydrolysis were 0.23-0.28 day$^{-1}$ for VSS, and 0.07-0.08 day$^{-1}$ for COD.

  • PDF