• Title/Summary/Keyword: COD distribution

Search Result 210, Processing Time 0.024 seconds

Characteristics of Particle Composition and Organic Matter Distribution for Tidal Flat Sediments in the Saemankeum Area (새만금 갯벌의 입도조성과 유기물질 분포특성)

  • YOU Sun-Jae;KIM Jong-Gu;CHO Eun-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.1
    • /
    • pp.49-54
    • /
    • 2003
  • This study was conducted to evaluate characteristics of particle composition and organic matter distribution for tidal flat sediments in the Saemankeum area. The tidal flat sediments consist of predominantly sand and a little of silt, whereas the content of clay was very low. The analyzed values of particles of tidal flat sediments were in the range of $4.60\~10.90\;{\phi}$ for mean size and $-0.1\~1.75\;{\phi}$ for sorting and $-1.0\~0.92\;{\phi}$ for skewness and $0.27\~6.75\;{\phi}$ for kurtosis. The tidal flat sediments are interpreted as representing significant effect of the environmental change due to the construction of Saemankeum embankment. The ORP was in the range of -133$\~$200 (mean 73) mV. But 24 stations of the total stations showed reduction condition, The concentration of CODs was in the range of 17.54$\~$6,176.3 mg/kg. The ratio of C/S was 0.02$\~$0.45 (mean 0.24). And the Saemankeum tidal flat sediment was a little effected by input organic pollutants from upper site area. Conclusively, conservation of the Saemankeum tidal flat sediment was requested because it is for the growing fishery and low organic matter.

Annual Variation of Water Quality and Bivalvia Communities in Gamak Bay (가막만의 수질환경과 이매패류(Bivalvia)군집의 연간변동)

  • Kim, Yun-Seol;Yoon, Ho-Seop;Park, Il-Woong;Lee, Woo-Bum;Joo, Seung-Yong;Choi, Sang-Duk
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.279-291
    • /
    • 2008
  • The seasonal distribution pattern of the Bivalvia samples collected from 12 stations in Gamak Bay in April, July, September and November from 2001 to 2006. A total of 28 species (226.72$\pm$196.20 ind. m$^{-2}$) were identified. The COD has decreased from 3.30 mg L$^{-1}$ to 1.89 mg L$^{-1}$ level on average and especially, the COD of sediment has decreased from 21.51 mg g-dry$^{-1}$ to 16.99 mg g-dry$^{-1}$ level on average. Therefore, water quality level of Gamak Bay was improved from level 3 to 2. The dominant species over 1.0 percentages were composed of the total 13 species, and they occupied 96.75% of the total density of the Bivalvia. Major dominant species was Musculista senhousia 100.38 ind. m$^{-2}$ (22.16%), Moerella rutila 69.00 ind. m$^{-2}$ (15.23%), Theorafragilis 49.70 ind. m$^{-2}$ (10.97%), Mytilus edulis 42.18 ind. m$^{-2}$ (9.31 %), and Raphia undulata 40.99 ind. m$^{-2}$ (9.05%). This area could be divided into three groups by the cluster analysis based on the total species composition.

Water Quality and Structure of Aquatic Ecosystem in Water Source, Lake Gachang (상수원 호소인 가창호의 수질과 수생태계의 계절적 변화)

  • Park, Yeon-Jeong;Lee, Hae-Jin;Seo, Jung-Kwan;Tak, Bo-Mi;Jeong, Hyun-Gi;Lee, Jae-Kwan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.296-304
    • /
    • 2011
  • This study was carried out to investigate the relation between water quality and structure of the aquatic ecosystem in the Lake Gachang from February to December in 2010. The annual mean COD (Chemical Oxygen Demand) in Lake Gachang was 3.5 mg $L^{-1}$, indicating, level II of environmental standards and the trophic state was mesotrophic. The seasonal succession of phytoplankton showed that Bacillariophyceae was mostly dominant species throughout the year except August. In case of zooplankton, rotifers dominate in the most seasons, but copepod (Nauplii) in August. The macrophyte plants showed diverse species composition consisted of 9 varieties, 77 species, 64 genera, 34 families and 24 orders. Surveyed species of macroinvertebrates were classified into 1 phyla, 2 classes, 4 orders, 7 families, 9 species. The macroinvertebrates showed FFG (Functional Feeding Groups) such as GC (Gathering-Collector) and SH (Shedder). A total of 42 species of fish was collected including $Zacco$ $koreanus$ and $Coreoperca$ $herzi$. In this study, we investigated environmental factors including pollutant source, load, water quality and distribution characteristics of biota such as phytoplankton, zooplankton, macrophyte plants, macroinvertebrates, fish.

A Study on the Characteristics of Oil-water Separation in Non-point Source Control Facility by Coalescence Mechanism of Spiral Buoyant Media (나선형 부유 고분자 여재의 Coalescence 특성을 이용한 비점오염원 저감시설의 유수분리특성 연구)

  • Kang, Sung-Won;Kim, Seog-Ku;Kim, Young-Im;Yun, Sang-Leen;Kim, Soo-Hae;Kim, Mee-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.950-955
    • /
    • 2007
  • Non-point source control system which had been designed only for oil-water separation in the fields of oil refinery and garage was upgraded in this research for the removal of runoff pollutants in impervious urban area. Pollutants including oil from driveway and bridge were eliminated by two types of pathway in the system. One is the coalescence mechanism that the oil droplets in the runoff come into contact with each other in the spiral buoyant media surface and form larger coalesced droplets of oil that are carried upstream to the oil layer. The other is the precipitation that solids in runoff were settled by gravity in the system. In this research, coalescing characteristics of oil and water separation were investigated through image analyses, and efficiencies of the non-point source control system were evaluated using dust in driveway and waste engine oil. Media made of high density and high molecular weight polyethylene was indeterminate helical shape and had sleek surface by analysing SEM photographs and BET. Surface area and specific gravity of media which were measured directly were 1,428 $mm^2$ and 45.3 $kg/m^3$ respectively. From the image analyses of the oil droplets photographs which were taken by using microscope, it was proved clearly that the coalescence was the main pathway in the removal of oil from the runoff. Finally, the performances of the non-point source control system filled up with the media were suspended solid $86.6\sim95.2%$, $COD_{Cr}$, $87.3\sim95.4%$, n-Hexane extractable materials $71.8\sim94.8%$ respectively.

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.

The Influence of Environmental Characteristics on the Fatness of Pacific Oyster, Crassostrea gigas, in Hansan-Koje Bay (한산${\cdot}$거제만의 환경특성이 양식 굴의 비만에 미치는 영향)

  • CHOI Woo-Jeung;CHUN Yong-Yull;PARK Jeung-Hum;PARK Yeong-Chull
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.794-803
    • /
    • 1997
  • Long line suspended culture of oysters has been started commercially in Hansan-Koje Bay since 1969. However, its Annual production has been decreased and culturing periods extended in recent years. So, we investigated environmental parameters and food organisms to identity the causes of poor fatness of oysters in Hansan-Koje Bay from February to November, 1994. As the result, the Water quality of Hansan-Koje Bay was found to be good for culture. For example, the mean concentration of COD was $1.35mg/\ell$, phosphate phosphorus was $0.30{\mu}g-at/\ell$ and dissolved inorganic nitrogen was $4.68{\mu}g-at/\ell$. However, the Hwado island and the inner part of the Hansan-Koje Bay were found to be eutrophicated due to various contaminants transported by land-based activities. But in the central pan of the Hansan-Koje Bay where the oyster farms Have been developed densely, the level of nutrient concentration was very low. During the study period, the dominant species of phytoplankton was Chaetoceros spp. with the percentage of $72.6\%\~87.8\%$ and the mean values of Chlorophyll-a concentration and phytoplankton standing crops were $2.05mg/m^3\;and\;188ind./m\ell$, respectively. The distribution of these parameters also showed similar trends those of nutrients. Especially, chlorophyll-a contents was very low with the concentration of below $0.5mg/m^3$ at central part of the Bay, Juklimpo. The fatness of oysters and the eutrophic index in this area were $18.1\%$ and 0.54, respectively. These values were lower than those of other culturing farms in the southern coastal areas in Korea. Therefore, we estimated that the insufficient food supply due to the low level of nutritional status was the major factors affecting the poor fatness of the Pacific oysters in Hansan-Koje Bay.

  • PDF

Coastal Eutrophication caused by Effluent from Aquaculture Ponds in Jeju (제주연안 육상양식장 밀집지역 주변해역의 영양염 과잉 요인)

  • Koh, Hyuk-Joon;Park, Sung-Eun;Cha, Hyung-Kee;Chang, Dae-Soo;Koo, Jun-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.315-326
    • /
    • 2013
  • This study investigated the temporal-spatial distribution and variations in water quality parameters (temperature, salinity, pH, DO, COD, SPM, DIN, DIP, silicate, TN, TP, and chlorophyll-a) in the coastal area of Jeju, Korea, adjacent to aquaculture ponds (Aewol-ri, Haengwon-ri, Pyosun-ri, and Ilkwa-ri). Data were collected bimonthly from February 2010 to December 2011. A principal component analysis (PCA) identified three major factors controlling variations in water quality during the sampling period. Aquaculture effluent water led to large changes in nutrient levels. The highest nutrient values were observed during the investigation period. The relatively large increase in organic matter at the sampling stations coupled with sea area runoff events during the summer rainy period. Variation in chlorophyll-a concentration was mainly driven by meteorological factors such as air temperature and rainfall in the coastal areas of Aewol and Haengwon. In the coastal areas of Pyosun and Ilkwa, pollution was caused by anthropogenic factors such as discharge of aquaculture effluent water. High nutrient concentrations at the majority of the coastal stations indicate eutrophication of coastal waters, especially within a distance of 300 m and depth of 10m from drainage channels. Coastal eutrophication driven by aquaculture effluent may be harmful inshore. Events such as eutrophication may potentially influence water pollution in aquaculture ponds when seawater intake is detected because of aquaculture effluent water.

Coastal Stratification Induced by Oceanographic Conditions of Open Sea in the East Sea on February, 2013 (2013년 2월 동해의 근해 해황에 의한 연안 성층)

  • Choi, Yong-Kyu;Kim, Sang-Woo;Jeong, Hee-Dong;Shim, Jeong-Min;Kwon, Kee-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.327-333
    • /
    • 2013
  • In order to see the stratification phenomenon in the coastal area induced by oceanographic conditions of the open sea, we analyzed the CTD (Conductivity-Temperature-Depth) data taken from the oceanographic survey on February 16~28, 2013. The stratification in Jukbyun coast was stronger than those of Sokcho and Gampo coast. Jukbyun line (104 line in the Serial Oceanographic Observation of National Fisheries Research and Development Institute) showed the anticyclonic eddy in the vertical distribution of temperature. The isotherm of $10^{\circ}C$ was concaved to the depth of 200 m in the middle station (station no. 9) of the line 104. It showed above $4^{\circ}C$ in positive temperature anomaly in the depth of 100~200 m in the middle station (station no. 9) of the line 104. This positive temperature anomaly was stretched to the coastal area with shallower depth. It is suggested that the stratification in Jukbyun coast was resulted from the onshoring of the Ulleung warm eddy. The movement of warm eddy may be act as a block to migration of cold water fishes like cod.

Geochemical Characteristics and Benthos Distribution in the Three Shellfish Farms in Suncheon Bay, Korea (순천만 패류 양식장 3개소의 지화학적 특성과 저서생물상 분포 -가리맛조개 양식장과 새꼬막 양식장-)

  • Suh, Jinsoo;Kim, Taehoon;Shin, Seyeon;Kahng, Hyung-Yeel;Ahn, Samyoung;Jung, Jae-Sung;Kim, Youngsung;Won, Nam-Il
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.691-710
    • /
    • 2017
  • This study was performed to investigate the geochemical and benthic environment of three shellfish farms in Suncheon Bay during the period of September 2014 ~ April 2015. Three sampling stations were selected; St.1 is the shellfish farm of razor clam near Jangsan area. St.2 is the shellfish farm of small ark shell near Hwapo area and St.3 is the shellfish farm of razor clam near Yongdu area. Razor clam was the dominant species at St.1, small ark shell and granulated ark shell were dominant at St.2 and St.3, respectively. Granulated ark shell inhabited St.3, although it is not cultured at that station. This station's exposure to air during the ebb tide and sediment composition likely provides the appropriate habitat for granulated ark shell species. Analysis of the number of different species showed that 8 benthos species were found to be distributed at St.1, 18 species at St.2, and 13 species at St.3. Among three stations, the highest Ignition Loss (IL), Chemical Oxygen Demand (COD) and Acid Volatile Sulfide (AVS) values were obtained from the sediment at St.2. The analysis of pore water from St.2 also showed the highest values of Total Organic Carbon (TOC), ammonia ($NH_4^+$), Dissolved Inorganic Nitrogen (DIN) and phosphate ($PO_4^{3-}$). These results are related to the fact that species dominance and richness is the highest in St.2.

Seasonal Variations of Water Quality in the Coastal Sea of Jungmun Resort Complex in Jeiu Island (제주도 중문관광단지 연안해역 수질의 계절변동)

  • Jang Seung-Min;Choi Young-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.2
    • /
    • pp.3-18
    • /
    • 2002
  • This study has been carried out to find the water Quality in coastal sea of fungmun area, southern Jeju Island. In-situ observations and water sampling had been made every month from July 1997 to June 2000. The distributions of water temperature and salinity over the study area have been 13.8~27.0℃ and 30.0~34.7‰, respectively. Salinity is showed low salinity from June to September (rainy season) because of rain. Tsushima Warm Waters (TWW) as ≥15℃ and ≥34‰ influence the adjacent sea around Jeju Island all year round. Yangtse Coastal Waters (YCW) influence the surface layer around Jeju from June to September and so strong stratification (termocline, halocline) resulted at the depth of between 20~30m at outer-sea. However the stratification does not happen even in summer at inner-sea, which seem to be caused due to vertical mixing by wind, waves and tides. A water mass of high value of water temperature and salinity (respectively 14.1~17.7℃, 33.9~34.1‰) stayed at the lower layer in outer-sea all the year round. It is probably formed by mixing between TWW and YSBCW(Yellow Sea Bottom Cold Water). The mean value of DO was the lowest in summer and the highest in winter. COD and TH were the highest in summer and the lowest in winter. However, TP showed the lowest value in summer season, because the mean value of N/P ratio was over 16. The mean of N/P ratio was under 16 in other seasons. The phosphate would be a limiting factor in the growth of phytoplanHon in summer. Nitrate would be a limiting factor in other seasons. Distribution of chlorophyll a did not show any seasonal change in the study period, but especially increased during April and May in the first year(1998) and the second year(1999) all over the study area, which suggested that phytoplankton inhabitation distributed widely in the study area. The space averaged values were the highest for TIN in rainy season and lower for TP in rainy season than in other seasons. It suggests that river runoff influences the inner-sea.

  • PDF