• 제목/요약/키워드: COCO 데이터 셋

검색결과 16건 처리시간 0.027초

객체 감지 데이터 셋 기반 인체 자세 인식시스템 연구 (Research on Human Posture Recognition System Based on The Object Detection Dataset)

  • 유암;리라이춘;루징쉬엔;쉬멍;정양권
    • 한국전자통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.111-118
    • /
    • 2022
  • 컴퓨터 비전 연구에서 2차원 인체 자세는 매우 광범위한 연구 방향으로 특히 자세 추적과 행동 인식에서 유의미한 분야다. 인체 자세 표적 획득은 이미지에서 인체 목표를 정확히 찾는 방법을 연구하는 것이 핵심이며 인체 자세 인식은 인공지능(AI)에 적용하는 한편 일상생활에 활용되고 있어서 매우 중요한 연구의의가 있다. 인체 자세 인식 효과의 우수성의 기준은 인식 과정의 성공률과 정확도에 의해 결정된다. 본 연구의 인체 자세 인식에서는 딥러닝 전용 데이터셋인 MS COCO를 기반하여 인체를 17개의 키 포인트로 구분하였다. 다음으로 주요 특징에 대한 세분화 마스크(segmentation mask) 방법을 사용하여 인식률을 개선하였다. 최종적으로 신경망 모델을 설계하고 간단한 단계별 학습부터 효율적인 학습에 이르기까지 많은 수의 표본을 학습시키는 알고리즘을 제안하여 정확도를 향상할 수 있었다.

LoRa 네트워크를 활용한 주차정보 서비스 시스템 (Parking information service system using LoRa network)

  • 김유찬;문남미
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.273-276
    • /
    • 2020
  • 기존의 물리 센서를 활용한 주차 감지는 주차장 규모가 클수록 큰 비용이 필요하고 이미지 기반의 분석은 개별 주차장에 대한 데이터 라벨링과 학습의 노력이 필요했다. 본 논문은 LoRa(Long Range) 네트워크와 마이크로프로세서를 활용한 IoT기반의 시스템으로 영상데이터를 서버로 전송하고 COCO(Common Object in context) 데이터셋으로 학습된 Mask R-CNN 기반의 모델을 활용한 주차장 내 차량점유 감지 알고리즘을 통해 개별 주차장에 대한 학습 또는 라벨링 없이 주차장 내 주차상태를 식별하고 사용자에게 인터페이스를 통해 실시간으로 주차정보를 제공하는 시스템을 구현한다.

  • PDF

U-Net 구조를 이용한 이미지에서의 보행자 분할 (Pedestrian Segmentation Using U-Net)

  • 김승택;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.519-521
    • /
    • 2019
  • 자율주행 자동차에서의 보행자 인식 및 사람의 행동 인식과 같은 분야 등에 대한 연구들이 활발하게 진행되고 그에 기반을 둔 기술들이 많이 개발되고 있다. 그리고 대부분의 연구에서는 사람에 대한 경계 박스를 검출한다. 영상에서 사람의 유무 혹은 위치를 판단하는 문제에서는 경계 박스만을 검출하는 것이 효율적일 수 있으나 경계 박스는 행동 인식과 같은 분야에 사용하기에는 많은 정보의 손실이 발생할 수 있다. 본 논문에서는 U-NET 구조의 딥러닝 모델을 사용해 경계 박스로 인한 정보 손실을 줄일 수 있는 보행자 분할 방법을 제안한다. 모델의 학습을 위해 2017 COCO 데이터셋의 사람 카테고리를 사용하였으며 Penn-Fudan 보행자 데이터셋을 이용하여 제안 방법을 테스트하였으며 기존의 방법들과 비교하여 의미 있는 결과를 얻었다.

Recurrent Neural Network를 이용한 이미지 캡션 생성 (Image Caption Generation using Recurrent Neural Network)

  • 이창기
    • 정보과학회 논문지
    • /
    • 제43권8호
    • /
    • pp.878-882
    • /
    • 2016
  • 이미지의 내용을 설명하는 캡션을 자동으로 생성하는 기술은 이미지 인식과 자연어처리 기술을 필요로 하는 매우 어려운 기술이지만, 유아 교육이나 이미지 검색, 맹인들을 위한 네비게이션 등에 사용될 수 있는 중요한 기술이다. 본 논문에서는 이미지 캡션 생성을 위해 Convolutional Neural Network(CNN)으로 인코딩된 이미지 정보를 입력으로 갖는 이미지 캡션 생성에 최적화된 Recurrent Neural Network(RNN) 모델을 제안하고, 실험을 통해 본 논문에서 제안한 모델이 Flickr 8K와 Flickr 30K, MS COCO 데이터 셋에서 기존의 연구들보다 높은 성능을 얻음을 보인다.

Comparison analysis of YOLOv10 and existing object detection model performance

  • Joon-Yong Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권8호
    • /
    • pp.85-92
    • /
    • 2024
  • 본 논문에서는 최신 객체 탐지 모델인 YOLOv10과 이전 버전들 간의 성능을 비교 분석하였다. YOLOv10은 NMS-Free 훈련, 향상된 모델 아키텍처, 효율성 중심의 설계 등을 도입하여 뛰어난 성능을 보인다. COCO 데이터셋을 사용한 실험 결과, 특히 YOLOv10-N은 2.3M의 적은 파라미터 수와 6.7G의 부동 소수점 연산(FLOPs)으로도 39.5%의 높은 정확도와 1.84ms의 낮은 지연 시간을 유지하였다. 주요 성능 지표로는 모델 파라미터 수, FLOPs, 평균 정확도(AP), 지연 시간을 사용하였다. 분석 결과, YOLOv10은 다양한 응용 분야에서 실시간 객체 탐지 모델로서의 효과성을 확인하였다. 향후 연구로는 다양한 데이터셋 테스트와 모델 최적화, 응용 사례 확대 등을 제안하였다. 이를 통해 YOLOv10의 범용성과 효율성을 더욱 높일 수 있을 것이다.

데카르트 좌표계 기반 노드 압축을 이용한 효율적인 2차원 연기 합성 (Efficient 2D Smoke Synthesis with Cartesian Coordinates System Based Node Compression)

  • 김동희;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.659-660
    • /
    • 2021
  • 본 논문에서는 데카르트 좌표계 기반으로 노드를 압축함으로써 SR(Super-resolution) 기반 연기 합성을 효율적으로 처리할 수 있는 방법을 제안한다. 제안하는 방법은 다운 스케일링과 이진화를 통하여 연기 시뮬레이션의 계산 공간을 효율적으로 줄이고, 데카르트 좌표계 축을 기준으로 쿼드트리의 말단 노드를 압축함으로써 네트워크의 입력으로 전달하는 데이터 개수를 줄인다. 학습에 사용된 데이터는 COCO 2017 데이터셋이며, 인공신경망은 VGG19 기반 네트워크를 사용한다. 컨볼루션 계층을 거칠 때 데이터의 손실을 막기 위해 잔차(Residual)방식과 유사하게 이전 계층의 출력 값을 더해주며 학습한다. 결과적으로 제안하는 방법은 이전 결과에 비해 네트워크로 전달해야 하는 데이터가 압축되어 개수가 줄어드는 결과를 얻었으며, 그로 인해 네트워크 단계에서 필요한 I/O 과정을 효율적으로 처리할 수 있게 되었다.

  • PDF

mask R-CNN 기반의 철도선로 객체검출 및 분류에 관한 연구 (Research on railroad track object detection and classification based on mask R-CNN)

  • 이승신;최종원;오염덕
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.81-83
    • /
    • 2024
  • 본 논문에서는 mask R-CNN의 이미지 세그먼테이션(Image Segmentation) 기법을 이용하여 철도의 선로를 식별하고 분류하는 방법을 제안한다. mask R-CNN의 이미지 세그먼테이션은 바운딩 박스(Bounding Box)를 통해 이미지에서 객체를 식별하는 R-CNN 알고리즘과는 달리 픽셀 단위로 관심 있는 객체를 검출하고 분류하는 기법으로서 오브젝트 디텍션(Object Detection)보다 더욱 정교한 객체 식별이 가능하다. 본 연구에서는 Pascal VOC 형태의 고속철도 데이터 24,205셋의 데이터를 전처리하고 MS COCO 데이터셋으로 변환하여, MMDetection의 mask R-CNN을 통해 픽셀 단위로 철도선로를 식별하고 정상/불량 상태를 분류하는 연구를 수행하였다. 선행연구에서는 YOLO를 활용하여 Polygon형태의 좌표를 바운딩 박스로 분류하였는데, 본 연구에서는 mask R-CNN을 활용함으로써 철도 선로를 더욱 정교하게 식별하였으며 정상/불량의 상태 분류는 YOLO와 유사한 성능을 보였다.

  • PDF

Multiple Binarization Quadtree Framework for Optimizing Deep Learning-Based Smoke Synthesis Method

  • Kim, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.47-53
    • /
    • 2021
  • 본 논문에서는 초해상도(Super-Resolution, SR)을 계산하는데 필요한 물리 기반 시뮬레이션 데이터를 효율적으로 분류하고 분할하여 빠르게 SR연산을 가능하게 하는 쿼드트리 기반 최적화 기법을 제안한다. 제안하는 방법은 입력 데이터로 사용하는 연기 시뮬레이션 데이터를 다운스케일링(Downscaling)하여 쿼드트리 연산 소요 시간을 대폭 감소시킨다. 이 과정에서 연기의 밀도를 이진화함으로써, 다운스케일링 과정에서 밀도가 수치 손실되는 문제를 완화하며 쿼드트리를 구축한다. 학습에 사용된 데이터는 COCO 2017 데이터 셋이며, 인공신경망은 VGG19 기반 네트워크를 사용한다. 컨볼루션 계층을 거칠 때 데이터의 손실을 막기 위해 잔차(Residual) 보완 방식과 유사하게 이전 계층의 출력 값을 더해주며 학습을 진행한다. 실험결과가 연기의 경우 제안된 방법은 이전 접근법에 비해 약 15~18배 정도의 속도향상을 얻었다.

국내 도로 환경에 특화된 자율주행을 위한 멀티카메라 데이터 셋 구축 및 유효성 검증 (Construction and Effectiveness Evaluation of Multi Camera Dataset Specialized for Autonomous Driving in Domestic Road Environment)

  • 이진희;이재근;박재형;김제석;권순
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.273-280
    • /
    • 2022
  • Along with the advancement of deep learning technology, securing high-quality dataset for verification of developed technology is emerging as an important issue, and developing robust deep learning models to the domestic road environment is focused by many research groups. Especially, unlike expressways and automobile-only roads, in the complex city driving environment, various dynamic objects such as motorbikes, electric kickboards, large buses/truck, freight cars, pedestrians, and traffic lights are mixed in city road. In this paper, we built our dataset through multi camera-based processing (collection, refinement, and annotation) including the various objects in the city road and estimated quality and validity of our dataset by using YOLO-based model in object detection. Then, quantitative evaluation of our dataset is performed by comparing with the public dataset and qualitative evaluation of it is performed by comparing with experiment results using open platform. We generated our 2D dataset based on annotation rules of KITTI/COCO dataset, and compared the performance with the public dataset using the evaluation rules of KITTI/COCO dataset. As a result of comparison with public dataset, our dataset shows about 3 to 53% higher performance and thus the effectiveness of our dataset was validated.

AI 학습을 위한 탑 인식 방법에 대한 연구 (A Study on Tower Recognition Method for AI Learning)

  • 강은수;고병국;이조순;최하진;김준오;이병권
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.339-342
    • /
    • 2020
  • 본 논문에서는 AI 학습을 위한 데이터 수집을 위해 윈도우 환경에서 YOLO 시스템을 사용한 객체 인식에 대한 방법을 제안한다. 이 방법은 아나콘다, 리눅스 등의 가상환경을 요구하지 않기 때문에 실사용 이전 사전 환경설정 작업 시간을 최소화한다. 또한 이 방법은 Visual Studio, OpenCV, CUDA 등 익숙한 플랫폼 및 라이브러리를 요구하기 때문에 다른 사람들에게 편안한 작업환경 제공한다. 또한 기존의 COCO 데이터 셋을 사용한 YOLOv3가 아닌 추가 학습 방법을 제안함으로써 보다 보편적인 객체 인식이 가능하다. 따라서 빠른 시간 내에 자신이 원하는 객체를 인식할 수 있는 시스템을 구축하는 방법을 제안한다.

  • PDF