• Title/Summary/Keyword: CO2 emissions

Search Result 1,456, Processing Time 0.023 seconds

Improvement of the Emission model Based on Average Speeds in the Transportation Sector (평균차속을 이용한 교통부문 온실가스 배출량 산출 모형의 보완방향)

  • Kim, Young-Ho;Hong, Sung-Jin;Lee, Tae-Woo;Park, Jun-Hong
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.2
    • /
    • pp.117-126
    • /
    • 2012
  • The transportation sector accounts for 33% of the total $CO_2$ emissions. Effective control measures for reducing $CO_2$ emissions are urgently needed to address global warming. Objective and reliable methods to estimate $CO_2$ emissions are a prerequisite for the implementation of such effective control measures. However, existing models have not been successful. Even though the average-speed model is one of the most convenient and useful methods for estimating $CO_2$ emissions, it cannot distinguish between a variety of roads as well as traffic conditions in the model. The results of this study found that there may be significant discrepancies between emissions estimated by the current average-speed model and those measured in real driving conditions. This paper proposed the subdivision of emission factors in the average-speed model depending on both traffic and road conditions.

A Prediction Model of CO2 Emissions for Construction Equipment Using Curve Fitting (Curve Fitting을 이용한 건설장비 CO2 배출량 예측 모델)

  • Noh, Jaeyun;Kim, Yujin;Lee, Jiyeon;Lee, Minwoo;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.107-108
    • /
    • 2020
  • The severity of the global climate crisis is increasing due to greenhouse gases caused by human activities. As a result, countries and industries are making efforts to reduce carbon dioxide emissions, the biggest cause of global warming. Many studies have been conducted to predict carbon emissions in the construction sector to reduce this, but they have not actually produced a highly usable formula in the field. Therefore, the two variables 'Curve Fitting' were performed based on the data of excavators and trucks measured at the field. As a result, we have obtained a carbon dioxide emission prediction model for construction equipment, and we would like to use it to help establish an eco-friendly process plan.

  • PDF

Analysis of CO2 Reduction effected by GHG·Energy Target Management System (TMS) and Korea Emissions Trading Scheme (ETS) (온실가스·에너지 목표관리제 및 배출권거래제 대상 기업의 명세서를 이용한 온실가스 감축 실적 분석)

  • Lee, Serim;Cho, Yongsung;Lee, Sue Kyoung
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.221-230
    • /
    • 2017
  • There are two main policies to meet the national goal of reducing Greenhouse Gases (GHGs) emissions in Korea towards Paris Agreement. From 2012 to 2014, Target Management System (TMS) was operated and the Emissions Trading Scheme (ETS) has been established since 2015. To compare the impact of TMS and ETS on reducing GHGs, we collected annual GHGs emission reports submitted by individual business entities, and normalized them using a z-variant normalized function. In order to evaluate the impact of those policies, we calculated the amount of GHGs emissions of 73 business entities from 15 business sectors. Those entities emitted $508million\;CO_2eq$, which is 74% of total national GHGs emissions in 2014. The main results of analysis indicate that accumulated GHGs emissions during the period 2012 to 2014 affected by TMS was higher than the national goal of GHGs emission reduction, and only the GHGs emissions in 2014 were in the range of allowed GHGs emissions, set by the Government. In 2015, when ETS initiated, total GHGs emission trading was $4.84million\;tCO_2eq$, which is only 0.9% of total allowance in 2015. However, more than 50% of business entities, who got the allowance of GHGs emission given by the Government, met the goal of GHGs emissions. Particularly, 27 of 73 business entities reduced GHGs more under the ETS rather than the TMS. Even though we analyzed only 4 years' data to demonstrate the impact of TMS and ETS, it is expected to commit the national goal of GHGs reduction target by TMS and ETS.

Effect of Continuous Biochar Use on Soil Chemical Properties and Greenhouse Gas Emissions in Greenhouse Cultivation (시설재배지에서 바이오차 연용이 토양의 화학적 특성 및 온실가스 배출에 미치는 효과)

  • Jae-Hyuk Park;Dong-Wook Kim;Se-Won Kang;Ju-Sik Cho
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.435-443
    • /
    • 2023
  • Global concern over climate change, driven by greenhouse gas emissions, has prompted widespread interest in sustainable solutions. In the agricultural sector, biochar has emerged as a focal point for mitigating these emissions. This study investigated the impact of continuous biochar application on CO2 and N2O emissions during the spring cabbage cultivation period. Greenhouse gas emissions in the biochar treatment groups (soils treated with 1, 3, and 5 tons/ha of rice husk biochar) were compared to those in the control group without biochar. During the spring cabbage cultivation period in 2022, the total CO2 emissions were in the range of 71.6-119.0 g/m2 day, and in 2023, with continuous biochar application, they were in the range of 71.6-102.1 g/m2 day. The total emissions of N2O in 2022 and 2023 were in the range of 11.7-23.7 and 7.8-19.9 g/m2 day, respectively. Overall, greenhouse gas emissions decreased after biochar treatment, confirming the positive influence of biochar on mitigating greenhouse gas release from the soil. Nevertheless, further research over an extended period exceeding five years is deemed essential to delve into the specific mechanisms behind these observed changes and to assess the long-term sustainability of biochar's impact on greenhouse gas dynamics in agricultural settings.

Estimation of greenhouse gas (GHG) emission from wastewater treatment plants and effect of biogas reuse on GHG mitigation

  • Chang, Jin;Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.173-183
    • /
    • 2014
  • A comprehensive mathematical model was developed for this study to estimate on-site and off-site GHG emissions from wastewater treatment plants (WWTPs). The model was applied to three different hybrid WWTPs (S-WWTP, J-WWTP, and T-WWTP) including anaerobic, anoxic, and aerobic process, located in Seoul City, South Korea. Overall on-site and off-site GHG emissions from S-WWTP, J-WWTP, and T-WWTP were $305,253kgCO_2e/d$, $282,682kgCO_2e/d$, and $117,942kgCO_2e/d$, respectively. WWTP treating higher amounts of wastewater produced more on-site and off-site GHG emissions. On average, the percentage contribution of on-site and off-site emissions was 3.03% and 96.97%. The highest amount of on-site GHG emissions was generated from anoxic process and the primary on-site GHG was nitrous oxide ($N_2O$). Off-site GHG emissions related to electricity consumption for unit operation was much higher than that related to production of chemicals for on-site usage. Recovery and reuse of biogas significantly reduced the total GHG emissions from WWTPs. The results obtained from this study can provide basic knowledge to understand the source and amount of GHG emissions from WWTPs and strategies to establish lower GHG emitting WWTPs.

Calculation and Projection of Greenhouse Gas Emissions from La Chureca Landfill in Managua, Nicaragua (니카라과 마나과시 La Chureca 매립장 온실가스 발생량 산정 및 예측)

  • Kim, Choong Gon;Lee, Hyun Jun;Kang, Ho Jeung;Kim, Jae Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.131-139
    • /
    • 2022
  • The aim of this study was to assess the feasibility of a landfill project to reduce greenhouse gas (GHG) from La Chureca Landfill in Managua, Nicaragua ("Project"). The feasibility study involved surveying the status and composition of waste on its way in to the landfill and projecting GHG emissions from the landfill. A projection of the GHG emissions with the IPCC model based on the survey results indicated the period 2006 to 2043 would see mean yearly GHG emissions of 290,147 ton-CO2/year with model certainty not considered, and 217,610 ton-CO2/year with model certainty considered. Thus, the result exceeded the corresponding median and mean values of other CDM projects implemented in Central America, even after model uncertainty was considered together with the conservative estimation of carbon capture efficiency. The similar result was produced even with an analysis of sensitivity to error factors. All the findings of the study are expected to be applicable as basic data for deciding about whether & how to proceed with the Project.

Study on the Characteristics of Carbon Dioxide Emissions Factors from Passenger Cars (승용차의 $CO_2$ 배출가스 영향인자 특성에 관한 연구)

  • Yoo, Jeong-Ho;Kim, Dae-Wook;Yoo, Young-Sook;Eum, Myung-Do;Kim, Jong-Choon;Lee, Sung-Wook;Baik, Doo-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.10-15
    • /
    • 2009
  • Emission regulations on greenhouse gas(GHG) in automobiles have been stringent because of global warming effect. Over 90% of total GHG emission are carbon dioxides and about 20% of this $CO_2$ emission are emitted from automobiles. In this study, 110 vehicles were tested on a chassis dynamometer and $CO_2$ emissions and fuel economy were measured in order to investigate the characteristics of $CO_2$ emission factor from passenger vehicles which are the most dominant vehicle type in Korea. The characteristics of emissions in accordance with displacements, gross vehicle weight, NIER and CVS-75 speed mode were discussed. It was found that vehicles having larger displacement, heavier gross vehicle weight, automatic transmission and specially at cold start emitted more $CO_2$ emissions. From these results, correlation between $CO_2$ emission and fuel economy was also obtained. This study may contribute to evaluate domestic greenhouse gas emissions and establish national policies on climate changes in future.

Assessment on Nitrous oxide (N2O) Emissions of Korea Agricultural Soils in 2009 (2009년 우리나라 농경지 토양에서의 N2O 배출량 평가)

  • Jeong, Hyun-Cheol;Kim, Gun-Yeob;Lee, Deog-Bae;Shim, Kyo-Moon;Lee, Seul-Bi;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1207-1213
    • /
    • 2011
  • This study was conducted to assess $N_2O$ emissions in agricultural soils of Korea. According to 1996 and 2006 IPCC (Intergovernmental Panel on Climate Change) methodology, $N_2O$ emission was calculated the sum of direct emission ($N_2O_{DIRECT}$) and indirect emission ($N_2O_{INDIRECT}$). To calculate $N_2O$ emissions, emission factor was used default of IPCC and activity data was used the food, agricultural, forestry and fisheries statistical yearbook of MIFAFF (Ministry for Food, Agriculture, Forestry and Fisheries). It was emitted 8,608 $N_2O$ Mg resulted from direct emission by application of chemical fertilizer and animal manure, input in n-fixation crops and input of crop residues and emissions converted $N_2O$ into $CO_2$ equivalent was 2,668 $CO_2$-eq Gg. Indirect emission as $N_2O_{(G)}$ (atmospheric deposition of $NH_3$ and $NO_X$) and $N_2O_{(L)}$ (leaching and runoffs) were 4,567 and 6,013 $N_2O$ Mg and emissions converted $N_2O$ into $CO_2$ equivalent were 1,416 and 1,864 $CO_2$-eq Gg, respectively. Total $N_2O$ emission in Korea agricultural soil in 2009 was 5,948 $CO_2$-eq Gg.

Comparison of N2O Emissions by Greenhouse Gas Emission Estimation Method (온실가스 배출량 산정 방법에 따른 N2O 배출량 비교)

  • Kang, Soyoung;Cho, Chang-Sang;Kim, Seungjin;Kang, Seongmin;Yoon, Hyeongi;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.175-184
    • /
    • 2015
  • In this study GC and PAS were used to calculate $N_2O$ concentration of exhaust gas from Wood Chip combustion system. Fuel supplied to the incinerator was collected and analyzed and then the analysis result was used to calculate $N_2O$ emissions. Tier 3 and Tier 4 Method were used to calculate the $N_2O$ emissions. Plant's Specific emission factor of $N_2O$ by Tier 3 Method was 0.35 kg/TJ, while default emission factor of Wood?Wood Waste proposed by 2006 IPCC G/L was 4 kg/TJ. So the $N_2O$ emission factor of this study was 3.65 kg/TJ lower compared to the IPCC G/L. The total emissions calculated by Plant's specific emission factor was 4.22 kg during the measuring period, but by Tier 4 Method it was 7.88 kg. This difference in emissions was caused by the difference of continuous measuring and intermittent sampling. It would be necessary to apply continuous measuring to calculate emissions of $Non-CO_2$ gas whose the density distribution is relatively high. However currently, according to the target management guideline of greenhouse gas and energy, the continuous measuring method to calculate greenhouse gas emission is applied only to $CO_2$. Therefore for reliable greenhouse gas emission calculation it would be necessary to apply continuous measuring to calculate $Non-CO_2$ gas emission.

Does CO2 and Its Possible Determinants are Playing Their Role in the Environmental Degradation in Turkey. Environment Kuznets Curve Does Exist in Turkey.

  • RAHMAN, Zia Ur
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.2 no.2
    • /
    • pp.19-37
    • /
    • 2019
  • Over the last few decades, the atmospheric carbon dioxide emission has been amplified to a great extent in Turkey. This amplification may cause global warming, climate change and environmental degradation in Turkey. Consequently, ecological condition and human life may suffer in the near future from these indicated threats. Therefore, an attempt was made to test the relationship among a number of expected factors and carbon dioxide emissions in the case of Turkey. The study covers the time series data over the period of 1970-2017. We employed the modern econometric techniques such as Johansen co-integration, ARDL bound testing approach and the block exogeneity. The results of the Johansen co-integration test show that there is a significant long-run relationship between carbon dioxide emissions and expected factors. The long-run elasticities of the ARDL model show that a 1% increase in the GDP per capita, electric consumption, fiscal development and trade openness will increase carbon dioxide emissions by 0.14, 0.52, 0.09 and 0.20% respectively. Further, our findings reveal that the environmental Kuznets curve (EKC) hypothesis and inverted U-shaped relationship between carbon dioxide emission and economic growth prevails. Therefore, the EKC hypothesis is valid and prevailing in the Turkish economy. The diagnostic test results show that the parameters of the ARDL model are credible, sTable and reliable in the current form. Finally, Block exogeneity analysis displays that all the expected factors are contributing significantly to carbon dioxide emissions in the Turkish economy.