• Title/Summary/Keyword: CO2 Reforming of Methane

Search Result 111, Processing Time 0.023 seconds

CO2 Capture from the Hydrogen Production Processes (수소생산 공정에서의 이산화탄소 포집)

  • Yeon Ki, Hong
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.19-23
    • /
    • 2022
  • Interest in hydrogen production to respond to climate change is increasing. Until now, hydrogen has been mainly produced through the SMR (Steam Methane Reforming) process using natural gas. A large amount of CO2 is emitted in the hydrogen production process through SMR, and the gas flow including CO2 generated in the SMR process has different characteristics for each emission source, so it is important to apply a suitable CO2 capture process. In the case of PSA tail gas or synthesis gas, the applicability of an amine-based process has been confirmed or demonstrated close to a commercial level. However, in the case of the flue gas generated from the reformer, it is still difficult to apply the conventional amine-based process because the partial pressure of CO2 is relatively low. Energy-saving innovative absorbents such as phase separation absorbents can be a solution to these difficulties.

Influence of Discharge Voltage-Current Characteristics on CO2 Reforming of Methane using an Elongated Arc Reactor (신장 아크 반응기를 이용한 메탄 CO2 개질반응에서 방전 전압-전류특성의 영향)

  • Kim, Kwan-Tae;Hwang, Na-Kyung;Lee, Jae-Ok;Lee, Dae-Hoon;Hur, Min;Song, Young-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.683-689
    • /
    • 2010
  • Reforming of methane with carbon dioxide has been carried out using a bipolar pulse driven elongated arc reactor operating at atmospheric pressure and non-equilibrium regime. This plasma reactor is driven by two kinds of power supply, characterized by different voltage-current characteristics under the same operating power and frequency. Varying the $CO_2/CH_4$ ratio and the discharge power, the conversion rate, yield, and reforming efficiency for the two power supplies are investigated in conjunction with the static and dynamic behaviors of voltage and current. It is found that not only the values of voltage and current but also their shapes give an influence on the reforming performances. Finally, a better electrical operation regime for the efficient plasma reforming is proposed based on the relationship between the voltage-current characteristics and the reforming performance.

Study on the Characterization of the Methane Stream Reforming in the High Pressure Using Reforming Catalyst (개질촉매를 이용한 고압에서 메탄 수증기 개질 특성연구)

  • 조종훈;백일현
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.145-153
    • /
    • 2003
  • In order to develop the carbonation process as a core technology of zero emission coal power plant, study on characterization of methane steam reforming (MSR) which is main reaction of this process was carried out. The effects of gas hourly space velocity (GHSV), steam/carbon (S/C) ratio and pressure in the MSR using reforming catalyst were investigated. The equilibrium composition of the gases produced in the MSR were obtained below GHSV 7,000 hr$\^$-1/. The operating conditions of carbonation process using hybrid reaction (MSR+CO$_2$ adsorption using CaO) were 700∼800$^{\circ}C$ and S/C ratio of 2.5∼3. The equilibrium mixture of gases composed of 75∼78% H$_2$ and 8∼9% CO$_2$ at atmospheric pressure and 60∼78% H$_2$ and 9∼l1% CO$_2$ at 1∼30 atm respectively under above operating conditions.

Production of Hydrogen-Rich Gas from Methane by a Thermal Plasma Reforming (고온 플라즈마 개질에 의한 메탄으로부터 고농도 수소생산)

  • Kim, Seong-Cheon;Lim, Mun-Sup;Chun, Young-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.362-370
    • /
    • 2006
  • The purpose of this paper was to investigate the reforming characteristics and optimum operating condition of the plasmatron assisted $CH_4$ reforming reaction for the hydrogen-rich gas production. Also, in order to increase the hydrogen production and the methane conversion rate, parametric screening studies were conducted, in which there were the variations of the $CH_4$ flow ratio, $CO_2$ flow ratio, vapor flow ratio, mixing flow ratio and catalyst addition in reactor. High temperature plasma flame was generated by air and arc discharge. The air flow rate and input electric power were fixed 5.1 l/min and 6.4 kW, respectively. When the $CH_4$ flow ratio was 38.5%, the production of hydrogen was maximized and optimal methane conversion rate was 99.2%. Under these optimal conditions, the following synthesis gas concentrations were determined: $H_2$, 45.4%; CO, 6.9%; $CO_2$, 1.5%; and $C_2H_2$, 1.1%. The $H_2/CO$ ratio was 6.6, hydrogen yield was 78.8% and energy conversion rate was 63.6%.

Biogas Reforming through Microwave Receptor Heating (마이크로웨이브 수용체 가열을 통한 바이오가스 개질)

  • Young Nam Chun;June An
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.126-134
    • /
    • 2024
  • Biogas, composed mainly of methane (CH4) and carbon dioxide (CO2), is a renewable gas that can serve as an alternative energy source. In this study, we developed a new microwave reformer and analyzed its reforming characteristics. We observed that higher temperatures of the microwave receptor led to increased reforming efficiency. By supplying appropriate amounts of methane and steam, we could prevent carbon generated from the thermal decomposition reaction of carbon dioxide from depositing on the catalytic active layer, thus avoiding the inhibition of catalytic activity. Hydrogen generation was enhanced when maintaining the biogas ratio and steam supply at adequate levels. Increasing the SiC ratio in the receptor improved the uniformity of temperature distribution and growth rate, resulting in higher conversion rates of the reforming process.

A Simulation Study on the Synthesis of Syngas from the Reforming Reaction of Biogas (바이오가스 개질 반응으로부터 합성가스 제조를 위한 반응 모사 연구)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • The amount of biogas increases as the amount of organic waste increases. Recently, biogas from organic waste have been made much efforts to utilize as a energy. In particular, the concentration of $CH_4$ and $CO_2$ generated from sewage sludge and livestock manure treatment are 60-70% and 30-35%, and $CH_4$ and $CO_2$ generated from food wastes are 60-80% and 20-40%. In case of landfill gas, $CH_4$ and $CO_2$ have a concentration of 40-60% and 40-60% respectively. Therefore, in order to use the biogas more widely, it is necessary to convert the biogas to methanol, LNG or DME. In this study, experiments were conducted to produce hydrogen and carbon monoxide through various biogas reforming reactions on $Ni/Ce-ZrO_2/Al2O3$ catalysts. The experiment of synthetic gas synthesis was carried out on a wide concentrations of methane and carbon dioxide, which were the major constituents of biogas from various organic wastes. The effect of $(O_2+CO_2)/CH_4$ (=R') on the yields of hydrogen and carbon monoxide, the conversion rate of methane and carbon dioxide was investigated. Also simulation for syngas synthesis on the $CO_2$ reforming of $CH_4$ was computed by employing total Gibbs free energy minimization method using PRO/II simulator, and compared with the experimental results on wet and dry reforming reaction of biogas.

The Effect of Methane in Hydrogen on the Performance of Proton Exchange Membrane Fuel Cell (수소연료 중의 메탄에 의한 고분자전해질 연료전지 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jun-Taek;Kim, Jun-Bum;Chung, Jong-Tae;Kim, Woo-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.432-438
    • /
    • 2007
  • The reforming process for hydrogen production generates some impurities. Impurities in hydrogen such as $CO_2$, CO, $H_2S$, $NH_3$ affect fuel cell performance. It is well known that CO generated by the reforming process may negatively affect performance of cell, cause damage on catalysts resulting performance degradation. Hydrogen produced by reforming process includes about 2% methane. The presence of methane up to 10% is reported negligible degradation in cell performance. However, methane more than 10% in hydrogen stream had not been researched. The concentration of impurity supplied to the fuel cell was verified by gas chromatography(GC). In this study, the influence of $CH_4$ on performance of PEM fuel cell was investigated by means of current vs. potential experiment, long run(10 hr) test and electrochemical impedance measurement when the concentrations of impurities were 10%, 20% and 30%.

Recycle of Carbon Dioxide Using Dry Reforming of Methane (메탄의 건식 개질을 이용한 이산화탄소의 재활용)

  • Kim, Jeongmook;Ryu, Jun-hyung;Lee, In-Beum;Lee, Jae Sung
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Considerable attention has been given to developing methodologies to reduce the emission of carbon dioxide from industry to meet strengthened environmental regulations. In this article, recent research trends on dry reforming of methane as an alternative method to reduce $CO_2$ emission from large scale industrial processes are addressed. To efficiently provide the energy needed in this strong endothermic reaction without additional $CO_2$ emission, it seems to be desirable to adopt autothermal reaction mode. The produced synthesis gas could be used as a reducing gas, or a feedstock for synthesis of chemicals and fuels.

Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor (고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션)

  • Ko, Jo-Han;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.

Steam Reforming of Methane for Chemical Heat Storage As a Solar Heat Storage(Part 2. Parameters Effect on Methane Conversion) (화학축열을 통한 태양열 저장을 위한 메탄의 스팀개질 반응 특성(Part 2. 조업변수의 영향))

  • Yang, D.H.;Chung, C.H.;Han, G.Y.;Seo, T.B.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.29-35
    • /
    • 2001
  • The chemical heat storage as the one way of utilization for high temperature solar energy was considered. The stram reforming reaction of methane was chosen for endothermic reaction. The reactor was made of stainless steel tube and it's dimension was 0.635 cm I.D. and 30 cm long, coiled tube because of the geometry requirement of solar receiver The effects of space velocity and reactants mole ratio on the methane conversion and CO selectivity were examined. From the experimental results, the optimum steam/methane mole ratio was determined.

  • PDF