• Title/Summary/Keyword: CO2 Emission Charge

Search Result 65, Processing Time 0.036 seconds

Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine using Mixed Fuels (혼합연료를 이용한 예혼합 압축착화 디젤엔진의 연소특성)

  • 조병호;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.58-64
    • /
    • 2002
  • A diesel engine has various merits such as high thermal-efficiency, superior fuel consumption and durability. Therefore the number of diesel engine in the world is increasing. As the seriousness of environmental pollution increases in the world, the method to reduce the noxious materials of CO2, NOx and P.M. is very important subject to correspond to exhaust gas regulations. A new concept, so called premixed charge compression ignition(PCCI), is focused among the various corresponding manners. In this study, we investigated the combustion characteristics of PCCI engine using a mixed fuels with that of commercial diesel engine. Finally we grasped a emission characteristics of PCCI engine. From this experiment, it could be found that NOx reduction is caused by the lower maximum temperature and soot reduction is caused by rapid combustion under diffusion combustion part. Also, it was found that 1st-combustion(cool flame) and 2nd-combustion(hot flame) is appeared in heat release curve, exhaust gas temperature is diminished and combustion variation is increased according to increasing of gasoline ratio.

Compact module and control system for district heating system (지역난방용 콤팩트 유닛 및 제어기 개발)

  • Lee, Young-Soo;Baik, Young-Jin;Jung, Dae-Hun;Kim, Jin;Um, Chul-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1343-1347
    • /
    • 2009
  • In order to comply with the global energy crisis and environment problem, it is necessary to research and develop the energy utilization technology with the reduction of the primary energy usage. Although the increasing rate of energy consumption started to attenuate, the entire consumption of energy as well as $CO_2$ emission rate tends to increase steadily along with an economic growth in Korea. The energy demand in Korea increases by annual 3.7% during the period from 2000 to 2006. And it is expected that we should take a charge of the greenhouse gas reduction obligation by the Climatic Change Convention(Kyoto Protocol) during the 2nd pledge period($2013{\sim}2017$). According to the IEA report in 2005, the emission amount of carbon dioxide is the 10th place in the world, and the increasing rate is 4.7% annually. Considering the economic scale of Korea, the degradation of energy usage is inevitable when the greenhouse gas reduction obligation come into effect. Therefore, effective energy usage is a very important issue to minimize baneful influence on industrial and economic activities.

  • PDF

Influence of $CO_2$ constraints to airlines by EU-ETS on passenger behavior (EU-ETS로 인한 항공사의 탄소비용증가가 항공여객에게 미치는 영향)

  • Kim, Baek-Jae;Yoo, Kwang-Eui;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.3
    • /
    • pp.61-68
    • /
    • 2011
  • 유럽연합(EU)은 2012년부터 항공산업에 대해 탄소배출권 거래제도를 적용할 예정이다. 따라서 유럽공항에서 출발 및 도착하는 모든 국제선과 국내선 항공편에 대해 탄소세가 부과될 것이며 이는 한국도 예외는 아니다. 또한 유럽을 운항하는 경우 장거리에 해당되어 중단거리를 운항하는 항공기들에 비해 총 탄소배출량이 더 많으므로 비용부담이 커질 것으로 예상된다. 본 연구는 EU-ETS로 인한 탄소세가 항공요금에 반영된다면 항공여객들이 어느 정도 민감하게 반응할 것이며 이러한 점들이 궁극적으로 한국의 항공시장에 어떤 영향을 미칠 것인지를 파악해 보는데 목적이 있다. 이를 위해 인천국제공항에서 프랑크푸르트 국제공항 노선을 이용하는 승객을 대상으로 직항노선과 중동지역 경유노선을 비교하여 EU-ETS 가격이 반영된 항공요금에 대한 반응을 Revealed Preference (RP)와 Stated Preference (SP) 설문자료와 Logit Model을 사용하여 분석하였다. 본 연구결과는 한국의 항공산업은 물론 2012년부터 부과될 EU-ETS에 대한 항공사들의 전략개발에 도움이 될 것이다.

Potential of Thermal Stratification and Partial Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines (HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 단위반응 수치 해석)

  • Lim, Ock-Taeck
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.21-28
    • /
    • 2009
  • The purpose of this study is to gain a better understanding of the effects of thermal stratification and partial fuel stratification on reducing the pressure-rise rate and emission in HCCI combustion. The engine is fueled with Di-Methyl Ether(DME) which has unique 2-stage heat release. Computational work is conducted with multi-zones model and detailed chemical reaction scheme. Calculation result shows that wider thermal stratification and partial fuel stratification prolong combustion duration and reduce pressure rise rate. But too wide partial fuel stratification increases CO and NOx concentration in exhaust gas, and decreases combustion efficiency.

  • PDF

Syntheses, Structures and Luminescent Properties of Two Novel M(II)-Phen-SIP Supramolecular Compounds (M = Co, Ni)

  • Zhu, Yu-Lan;Shao, Shuai;Ma, Kui-Rong;Tang, Xue-Ling;Cao, Li;Zhao, Hui-Chao
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1259-1263
    • /
    • 2012
  • Two metal compounds, $[Co(phen)_2(H_2O)_2]{\cdot}2H_2SIP{\cdot}2H_2O$ 1 and $[Ni(phen)_3]{\cdot}2H_2SIP{\cdot}3H_2O$ 2, have been obtained by incorporating 1,10-phenanthroline (phen) and 5-sulfoisophthalic acid monosodium salt ($NaH_2SIP$) ligands under hydrothermal conditions. Meanwhile, the two compounds were characterized by element analysis, IR, XRD, TG-DTA and single-crystal X-ray diffraction. Both 1 and 2 present 3D supramolecular structures via O-H${\cdots}$O hydrogen bond interactions. Luminescent properties for 1 and 2 were also studied. The compound 1 has two fluorescence emission peaks centered at 398 nm attributed to the intraligand emission from the SIP ligand and at 438 nm assigned to the combined interaction of intraligand ${\pi}^*-{\pi}$ transitions of the phen ligand and ligand-to-metal-charge-transfer (LMCT) transitions (${\lambda}_{ex}$ = 233 nm). The compound 2 shows one emission band centered at 423 nm with a shoulder peak at 434 nm which may be originated from the intraligand ${\pi}^*-{\pi}$ transitions of the phen ligand (${\lambda}_{ex}$ = 266 nm).

Emissions and Combustion Characteristics of LPG HCCI Engine (LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.

EFFECT OF MIXTURE PREPARATION IN A DIESEL HCCI ENGINE USING EARLY IN-CYLINDER INJECTION DURING THE SUCTION STROKE

  • Nathan, S. Swami;Mallikarjuna, J.M.;Ramesh, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.543-553
    • /
    • 2007
  • It is becoming increasingly difficult for engines using conventional fuels and combustion techniques to meet stringent emission norms. The homogeneous charge compression ignition(HCCI) concept is being evaluated on account of its potential to control both smoke and NOx emissions. However, HCCI engines face problems of combustion control. In this work, a single cylinder water-cooled diesel engine was operated in the HCCI mode. Diesel was injected during the suction stroke($0^{\circ}$ to $20^{\circ}$ degrees aTDC) using a special injection system in order to prepare a nearly homogeneous charge. The engine was able to develop a BMEP(brake mean effective pressure) in the range of 2.15 to 4.32 bar. Extremely low levels of NOx emissions were observed. Though the engine operation was steady, poor brake thermal efficiency(30% lower) and high HC, CO and smoke were problems. The heat release showed two distinct portions: cool flame followed by the main heat release. The low heat release rates were found to result in poor brake thermal efficiency at light loads. At high brake power outputs, improper combustion phasing was the problem. Fuel deposited on the walls was responsible for increased HC and smoke emissions. On the whole, proper combustion phasing and a need for a well- matched injection system were identified as the important needs.

Preparation and capacitance properties of graphene based composite electrodes containing various inorganic metal oxides

  • Kim, Jeonghyun;Byun, Sang Chul;Chung, Sungwook;Kim, Seok
    • Carbon letters
    • /
    • v.25
    • /
    • pp.14-24
    • /
    • 2018
  • Electrochemical properties and performance of composites performed by incorporating metal oxide or metal hydroxide on carbon materials based on graphene and carbon nanotube (CNT) were analyzed. From the surface analysis by field emission scanning electron microscopy and field emission transmission electron microscopy, it was confirmed that graphene, CNT and metal materials are well dispersed in the ternary composites. In addition, structural and elemental analyses of the composite were conducted. The electrochemical characteristics of the ternary composites were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in 6 M KOH, or $1M\;Na_2SO_4$ electrolyte solution. The highest specific capacitance was $1622F\;g^{-1}$ obtained for NiCo-containing graphene with NiCo ratio of 2 to 1 (GNiCo 2:1) and the GNS/single-walled carbon $nanotubes/Ni(OH)_2$ (20 wt%) composite had the maximum specific capacitance of $1149F\;g^{-1}$. The specific capacitance and rate-capability of the $CNT/MnO_2/reduced$ graphene oxide (RGO) composites were improved as compared to the $MnO_2/RGO$ composites without CNTs. The $MnO_2/RGO$ composite containing 20 wt% CNT with reference to RGO exhibited the best specific capacitance of $208.9F\;g^{-1}$ at a current density of $0.5A\;g^{-1}$ and 77.2% capacitance retention at a current density of $10A\;g^{-1}$.

Fluorescence Quenching of Norfloxacin by Divalent Transition Metal Cations

  • Park, Hyoung-Ryun;Seo, Jung-Ja;Shin, Sung-Chul;Lee, Hyeong-Su;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1573-1578
    • /
    • 2007
  • Fluorescence quenching of norfloxacin (NOR) by Cu2+, Ni2+, Co2+ and Mn2+ was studied in water. The change in the fluorescence intensity and lifetime was measured as a function of quencher concentration at various temperatures. According to the Stern-Volmer plots, the NOR was quenched both by collisions and complex formation with the same quencher. However, the static quenching had a more important effect on the emission. Large static and dynamic quenching constants support significant ion-dipole and orbital-orbital interactions between NOR and cations. The both quenching constants by Cu2+ were the largest among quenchers. Also, quenching mechanism of Cu2+ was somewhat different. The change in the absorption spectra due to the quencher provided information on static quenching. The fluorescence of NOR was relatively insensitive to both the dynamic and static quenching compared with other quinolone antibiotics. This property can be explained by the twisted intramolecular charge transfer.

Luminescent Properties and Anti-Counterfeiting Applications of SrWO4:RE3+ (RE=Dy, Sm, Dy/Sm) Phosphors Doped with Several Activator Ions (다양한 활성제 이온이 도핑된 SrWO4:RE3+ (RE=Dy, Sm, Dy/Sm) 형광체의 특성과 위조 방지 응용)

  • Yoon, Soohwan;Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.393-399
    • /
    • 2020
  • A series of phosphors, SrWO4:5 mol% Dy3+, SrWO4:5 mol% Sm3+, and SrWO4:5 mol% Dy3+:x Sm3+ (x=1~15 mol%), were prepared using a facile co-precipitation. The crystal structure, morphology, photoluminescence properties, and application in anti-counterfeiting fields were investigated. The crystalline structures of the prepared phosphors were found to be tetragonal systems with the dominant peak occurring at the (112) plane. The excitation spectra of the Dy3+ singly-doped SrWO4 phosphors were composed of an intense charge-transfer band centered at 246 nm in the range of 210~270 nm and two weak peaks at 351 nm and 387 nm due to the 6H15/26P7/2 and 6H15/24I13/2 transitions of Dy3+ ions, respectively. The wavelength of 246 nm was optimum for exciting the luminescence of Dy3+ and Sm3+ co-doped SrWO4 phosphors. The emission spectra consisted of two intense blue and yellow emission bands at 480 nm and 573 nm corresponding to the 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+, and two strong emission peaks at 599 nm and 643 nm originating from the 4G5/26H7/2 and 4G5/26H9/2 transitions of Sm3+, respectively. As the concentration of Sm3+ ions increased, the emission intensities of Dy3+ rapidly decreased, while the emission intensities of Sm3+ gradually increased. These results suggest that the color of the emission light can be tuned from yellow to white by changing the concentration of Sm3+ ions at a fixed 5 mol% Dy3+. Furthermore, the fluorescent security inks were synthesized for use in anti-counterfeiting applications.