• Title/Summary/Keyword: CO2 배출

Search Result 1,751, Processing Time 0.036 seconds

Study on Lean-Premixed Combustion Characteristics of Dual-Stage Burner (이중 연료 분사구조를 갖는 희박-예혼합 버너의 연소특성 연구)

  • Jang, Jae Hwan;Cho, Ju Hyeong;Kim, Han Seok;Lee, Sang Min;Kim, Min Kuk;Ahn, Kook Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • This study aims to experimentally investigate the combustion characteristics of a lean premixed swirl-stabilized burner with dual-stage fuel injection arrays. The results show that a variation in the fuel distribution to fuel stages 1 (upstream) and 2 (downstream) produces a noticeable change in the NOx and CO emissions. Reducing the confined ratio, defined as the ratio of the nozzle exit diameter to the liner diameter, may reduce NOx and CO emissions owing to reduced combustion loading and longer residence time, respectively. A nozzle exit velocity of 30 m/s shows the optimum characteristics in terms of NOx and CO emissions and flame stability: increasing or decreasing the nozzle exit velocity leads to a degradation in emissions or flame stability, respectively.

Evaluation on Reduction Effect of CO emission by The Real-time Traffic Information Service (실시간교통정보서비스의 일산화탄소 배출저감효과 평가)

  • Kim, Jun-Hyung;Um, Jung-Sup
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.09a
    • /
    • pp.129-133
    • /
    • 2010
  • 본 논문은 차량의 공회전시 불완전연소로 인한 일산화탄소의 배출량이 최대인 점에 착안하여 일반 네비게이션에서 제공하는 최단거리 모드로 주행했을 시와 '막힘없는 길 안내를 제공' 한다는 최신 공간정보기술인 실시간교통정보서비스를 적용했을 시의 공회전시간 및 일산화탄소 배출량을 비교 평가하여, 실시간교통정보서비스의 일산화탄소 저감효과를 추정해보기 위해 진행되었다. 대구시내의 교통정체구역인 수성구청에서 성서초등학교에 이르는 약 12km의 구간을 선정하여 2주간 동일구간을 요일별 시간대별로 주행함으로써 최단거리 안내서비스 주행시와 실시간교통정보서비스를 적용한 경로주행시의 공회전시간을 기록하고 환경부에서 제공하는 연료별 배출계수와 평균속도에 따른 일산화탄소 배출계수를 이용하여 일산화탄소 배출량을 산정하였으며, 측정결과 공회전시간이 약 28%, 일산화탄소 배출량은 약 57%의 감축효과를 보임을 확인하였다.

  • PDF

Analysis of the Impact of Initial Carbon Emission Permits Allocation on Economic Growth (초기 탄소배출권 배분이 경제성장에 미치는 영향 분석)

  • Park, Sunyoung;Kim, Dong Koo
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.167-198
    • /
    • 2011
  • The Korean government recently announced greenhouse gases (GHG) emissions reduction target as 30% of 2020 business as usual (BAU) emission projection. As carbon emissions trading is widely used to achieve reductions in the emissions of pollutants, this study deals with the sectoral allocation of initial carbon emission permits in Korea. This research tests the effectiveness of a variety of allocation rules based on the bankruptcy problem in cooperative game theory and hybrid input-output tables which combines environmental statistics with input-output tables. The impact of initial emission permits allocation on economic growth is also analyzed through green growth accounting. According to the analysis result, annual GDP growth rate of Korea is expected to be 4.03%, 4.23%, and 3.67% under Proportional, Constrained Equal Awards, and Constrained Equal Losses rules, respectively. These rates are approximately from 0.69% points to 0.13% points lower than the growth rate of 4.36% without compulsory $CO_2$ reduction. Thus, CEA rule is the most favorable in terms of GDP growth. This study confirms the importance of industry level study on the carbon reduction plan and initial carbon emission permits should reflect the characteristic of each industry.

  • PDF

Characterization of Greenhouse Gas by Emission Regions and Sectors using GHG-CAPSS(2006) (GHG-CAPSS를 이용한 지역별, 부문별 온실가스 배출 특성 분석(2006))

  • Lee, Sue-Been;Lim, Jae-Hyun;Lyu, Young-Sook;Yeo, So-Young;Hong, You-Deog
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.69-77
    • /
    • 2011
  • While increased use of energy and fossil fuel in the recent years could worsen air quality and climate change, only few studies have been conducted on estimation of greenhouse gas emissions and characterization of emission types by sectors and regions in Korea. In this study, greenhouse gases emissions based on resions(Si, Gun, Gu) and emitted sectors(industry, transport, cemmercial and institutional, residential, waste, agriculture, others) were investigated using GHG-CAPSS(Greenhouse GasClean Air Policy Support System) developed to support to national and regional greenhouse gases reduction strategies. GHG-CAPSS follows IPCC(Intergovernmental Panel on Climate Change) Guideline methodology to categorize the emission sources and estimation of greenhouse gases using bottom-up approach. Estimated total greenhouse gases emissions were 588,011 thousand tons as $CO_2$ equivalent. Industry(50.1%) sector exhibited the highest portion followed by transport(17.6%), commercial and institutional(12.6%), residential(12.6%), waste(2.6%), agriculture(2.5%). Based on regional estimation, Gyeonggi(14.9%) demonstrated the highest emitted greenhouse gases among big cities followed by Jeonnam(12.4%), Gyeongbuk(11.0%), Ulsan(9.2%) and Seoul(8.9%).

Calculation of Greenhouse Gas and Air Pollutant Emission on Inter-regional Road Network Using ITS Information (지능형교통체계(ITS) 정보를 이용한 지역 간 도로의 온실가스 및 대기오염물질 배출량 산정)

  • Wu, Seung Kook;Kim, Youngkook;Park, Sangjo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.55-64
    • /
    • 2013
  • Conventionally, greenhouse gas (GHG) emissions in the transport sector have been estimated using the fuel consumption (i.e. Tier 1 method). However, the GHG emissions on road networks may not be practically estimated using the Tier 1 method because it is not practical to monitor fuel consumption on a road segment. Further, air pollutant emissions on a road may not be estimated efficiently by the Tier 1 method either due to the diverse characteristics of vehicles, such as travel speed, vehicle type, model year, fuel type, etc. Given these conditions, the goal of this study is to propose a Tier 3 level methodology to calculate $CO_2$ and $NO_X$ emissions on inter-regional roads using the information from ITS infrastructure. The methodology may avoid the under-estimation issue caused by the concavity of emission factor curves because the ITS speed or volume information is aggregated by a short time interval. The proposed methodology was applied to 4 road segments as a case study. The results show that the management of heavy vehicles' speed is important to control the $CO_2$ and $NO_X$ emissions on road networks.

Role and Principle of Lowering Storage Temperature : Methane Emission and Microbial Community of Cattle Manure (저온 저장의 역할과 원리: 우분의 메탄 배출과 미생물 군집)

  • Im, Seongwon;Oh, Sae-Eun;Hong, Do-giy;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.41-49
    • /
    • 2019
  • Livestock manure is a significant source for greenhouse gas (GHG) emission, and a huge amount of GHG emission is generated during its storage. In the present work, lowering temperature was attempted to mitigate methane ($CH_4$) emission from cattle manure (CM) with high solid content. CM was stored for 60 d at $15-35^{\circ}C$ ($5^{\circ}C$ interval). $CH_4$ emission reached $63.6{\pm}3.6kg\;CO_2\;eq./ton\;CM$ at $35^{\circ}C$, which was reduced to $51.6{\pm}1.8$, $24.1{\pm}4.4$, $14.9{\pm}0.5$, and $3.7{\pm}0.1kg\;CO_2\;eq./ton\;CM$ at 30, 25, 20, and $15^{\circ}C$, respectively. After storage, 30% of COD reduction was observed in the CM stored at $35^{\circ}C$, while the COD removal decreased to only 6% at $15^{\circ}C$. It was found that only 3-11% of COD removal was done by anaerobic process, while the rest of COD removal was done by aerobic biological process. Methanobrevibacter and Methanolobus were found to be the dominant species in the CM, and the dominance of Methanolobus psychrophilus increased at lower storage temperature. Specific methanogenic activity test results showed that the inhibition by low temperature was temporal.

Water-Splitting and Highly Active Catalysts Technology for CO2 Reduction (물 분해와 CO2 환원을 위한 고활성 촉매기술)

  • Chung, Pyung Jin
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.30-50
    • /
    • 2017
  • Currently, exhaust gas emitted from thermal power plants and various combustion facilities that consume large amounts of fossil fuels such as coal, oil, and natural gas contains high concentrations of $CO_2$ and is a major cause of global warming. Conventionally, as a countermeasure against this problem, research and development are being carried out from various fields, and it is considered to be one of the most promising methods for separating and recovering $CO_2$ in the exhaust gas. One of the reasons for the low use of carbon dioxide is oxidized among the carbon compounds and is present in the most stable state. From the viewpoint of $CO_2$ emissions, $CO_2$ immobilization technology, which converts $CO_2$ into chemically useful compounds, is considered to be more important.

Analysis of CO2 Emission Depending on Hydrogen Production Methods in Korea (국내 수소 생산에 따른 CO2 발생량 분석)

  • Han, Ja-Ryoung;Park, Jinmo;Kim, Yohan;Lee, Young Chul;Kim, Hyoung Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Because of environmental pollution problem, interests in hydrogen energy has been concentrating sharply. Especially in Korea, the market related with fuel cell vehicles and hydrogen refueling stations is increasing actively under the government-led. However, the actual contributions to environmental improvement effect of hydrogen energy is required to be evaluated with representing reality. In this sense, lots of conventional analyzing tools have some limitations to adapt in Korea's situation directly. It is caused by the differences of raw energy market between the US and Korea. That is, most of analytic tools are developed by representing energy market of the US, where can produce variety of raw feed energy sources. Therefore, in this paper, we propose mass balance based numerical analyzing method, which is suitable for the actual hydrogen production process in Korea for exact evaluation of $CO_2$ emission amount in this country. Using proposed method, we has demonstrated reformed hydrogen from natural gas, LPG and naphtha, electrolysis-based hydrogen, and COG-based hydrogen. Furthermore, with the comparison of GREET program analysis results, robustness of numerical analysis method is demonstrated.

Analysis of CO2 Emission Intensity per Industry using the Input-Output Tables 2003 (산업연관표(2003년)를 활용한 산업별 CO2 배출 원단위 분석)

  • Park, Pil-Ju;Kim, Mann-Young;Yi, Il-Seuk
    • Environmental and Resource Economics Review
    • /
    • v.18 no.2
    • /
    • pp.279-309
    • /
    • 2009
  • Greenhouse gas emissions should be precisely forecast to reduce the emissions from industrial production processes. This study calculated the direct and indirect $CO_2$ emission intensities of 401 industries using the Input-Output tables 2003 and statistical data on the amount of energy use. This study had some limitations in drawing study findings because overseas data were used given the lack of domestic data. Other limiting factors included the oil distribution problems in the oil refinery sector, re-review of carbon neutral, and insufficient consideration of waste treatment. Nonetheless, this study is very meaningful since the direct and indirect $CO_2$ emission intensities of 401 industries were calculated. Specifically, this study considered from the zero-waste perspective the effects of waste, which attract interest worldwide since coke gas and gas from the steel industry are obtained as byproducts for the first time in Korea. According to the results of the analysis of $CO_2$ emission intensity per industry, typical industries whose indirect $CO_2$ emission intensity is high include crude steel making, Remicon, steel wire rods & track rail, cast iron, and iron reinforcing rods & bar steel. These industries produce products using the raw materials produced in the industrial sector whose $CO_2$ emission intensity is high. The representative industries whose direct $CO_2$ emission intensity is high include cement, pig iron, lime & plaster products, andcoal-based compounds. These industries extract raw ore from nature and refine them into raw materials that are useful in other industries. The findings in this study can be effectively used for the following case: estimation of target $CO_2$ emission reduction level reflecting each industrial sector's characteristics, calculation of potential emission reduction of each policy to reduce $CO_2$ emissions, identification of a firm's $CO_2$ emission level, and setting of the target level of emission reduction. Moreover, the findings in this study can be utilized widely in fields such as System of integrated Environmental and Economic Accounting(SEEA) and Material Flow Analysis(MFA) as the current topic of research in Korea.

  • PDF