• Title/Summary/Keyword: CO sensor

Search Result 1,716, Processing Time 0.038 seconds

The Gas Sensing Properties of Thick Film Gas Sensor Using Co3O4 Powder Prepared by Hydrothermal Reaction Method (수열합성법으로 제조된 Co3O4 분말을 사용한 후막 가스센서의 가스감지 특성)

  • Kim, Kwang-Hee;Kim, Jeong-Gyoo;Park, Ki-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.406-411
    • /
    • 2011
  • $Co_3O_4$ thick film gas sensor using the powder prepared by hydrothermal reaction method(HRM) was fabricated. For comparison study, we also prepared the sensor using commercial $Co_3O_4$ powder under the same fabrication conditions. Sensitivity, time response, and selectivity of them to variable gases such as iso-$C_4H_{10}$, CO, $NH_3$, and $CH_4$ were investigated. The sensor from the powder prepared by HRM showed higher sensitivity to every gas than those from commercial powder. For iso-$C_4H_{10}$ gas, the sensitivities of both sensor to 100 ppm are 160 % and 40 %, respectively. Time response and selectivity of the sensor using the powder prepared by HRM were better than those of the sensor using commercial powder.

Development of Gas Sensor Modules and Sensor Calibration Systems (가스 센서모듈 및 센서보정시스템 개발)

  • Park, Cheol-Young;Lim, Byung-Hun;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • Sensor is a key element in various fields of applications such as sensor networks. However, they could not be easily developed because of several factors such as temperature dependence of output characteristics and/or nonlinearity. Calibration of sensor is also needed to solve these problems. Conventional calibration process required a lot of time and expenses. Therefore, it is important to develop sensor systems which can shorten development time and minimize expense. In this paper, we develop CO and $CO_2$ Sensor modules and propose a multiple sensor calibration system to resolve problems of conventional calibration process. A proposed system is composed of sensor module, system board and monitor program. Regression analysis method based on the least mean squares is used for calibration. We introduced the structure of calibration systems and experimental results. Calibration results can be used to confirm the effectiveness of the proposed system.

Fabrication of CO2 Sensor Membrane by Photolithographic Method (사진식각법을 이용한 CO2 센서 감지막의 제조)

  • Park, Lee Soon;Kim, Sang Tae;Koh, Kwang-Nak
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • A FET(Field Effect Transistor) type dissolved $CO_2$ sensor based on Severinghaus type $CO_2$ sensor was fabricated by the photolithographic process. The sensor consists of Ag/AgCl reference electrode and membranes (hydrogel membrane and $CO_2$ gas permeable membrane) on the pH-ISFET base chip. Ag/AgCl reference electrode was fabricated as follows. Ag layer was thermally evaporated and then its upper surface was chemically chloridized into the AgCl. The hydrogel used as an internal electrolyte solution was fabricated by a photolithographic method using 2-hydroxyethyl methacrylate(HEMA) and acrylamide. $CO_2$ permeable membrane on the top of the hydrogel layer was formed by photolithographic process with UV-oligomer. The FET type $pCO_2$ sensor fabricated by photolithographic method showed good linearity within the concentration range of $10^{-3}{\sim}10^0mole/{\ell}$ of dissolved $CO_2$ in aqueous solution with high sensitivity.

  • PDF

A Volatile Organic Compound Sensor Using Porous Co3O4 Spheres

  • Kim, Tae-Hyung;Yoon, Ji-Wook;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.134-138
    • /
    • 2016
  • Porous $Co_3O_4$ spheres with bimodal pore distribution (size: 2-3 nm and ~ 30 nm) were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Co-acetate and polyethylene glycol (PEG), while dense $Co_3O_4$ secondary particles with monomodal pore distribution (size: 2-3 nm) were prepared from the spray solution without PEG. The formation of mesopores (~ 30 nm) was attributed to the decomposition of PEG. The responses of a porous $Co_3O_4$ sensor to various indoor air pollutants such as 5 ppm $C_2H_5OH$, xylene, toluene, benzene, and HCHO at $200^{\circ}C$ were found to be significantly higher than those of a commercial sensor using $Co_3O_4$ and dense $Co_3O_4$ secondary particles. Enhanced gas response of porous $Co_3O_4$ sensor was attributed to high surface area and the effective diffusion of analyte gas through mesopores (~ 30 nm). Highly sensitive porous $Co_3O_4$ sensor can be used to monitor various indoor air pollutants.

Solid-State $CO_2$ Sensor using ${Li_2}{CO_3}-{Li_3}{PO_4}-{Al_2}{O_3}$ Solid Electrolyte and ${LiMn_2}{O_4}$ as Reference Electrode (${Li_2}{CO_3}-{Li_3}{PO_4}-{Al_2}{O_3}$계의 고체 전해질 및 ${LiMn_2}{O_4}$의 기준전극을 사용한 $CO_2$ 가스센서)

  • 김동현;윤지영;박희찬;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.817-823
    • /
    • 2000
  • A solid-state electrochemicall cell for sensing CO2 gas was fabricated using a solid electrolyte of Li2CO3-Li3PO4-Al2O3 mixture and a reference electrode of LiMn2O4. The e.m.f. (electromotive force) of sensor showed a good accordance with theoretical Nernst slope (n=2) for CO2 gas concentration range of 100-10000 ppm above 35$0^{\circ}C$. The e.m.f. of sensor was constant regardless of oxygen partial pressure at the high temperature above 0.1 atm. It was, however, a little depended on oxygen partial pressure as the pressure decreased below 0.1 atm. The oxygen-dependency of our sensor gradually disappeared as the operating temperature increased. The sensing behavior of our CO2 sensor was affected by the presence of water vapor, but its effect was small comparing with other sensors.

  • PDF

Performance Evaluation of a Smart CoAP Gateway for Remote Home Safety Services

  • Kim, Hyun-Sik;Seo, Jong-Su;Seo, Jeongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3079-3089
    • /
    • 2015
  • In this paper, a smart constrained application protocol (CoAP)-based gateway with a border router is proposed for home safety services to remotely monitor the trespass, fire, and indoor air quality. The smart CoAP gateway controls a home safety sensor node with a pyroelectric infrared motion sensor, a fire sensor, a humidity and temperature sensor, and a non-dispersive infrared CO2 sensor and gathers sensing data from them. In addition, it can convert physical sensing data into understandable information and perform packet conversion as a border router for seamless connection between a low-power wireless personal area network (6LoWPAN) and the Internet (IPv6). Implementation and laboratory test results verify the feasibility of the smart CoAP gateway which especially can provide about 97.20% data throughput.

Development and application of the semi-internal type UHF PD sensor for Gas Insulated Switchgear (초고압 GIS의 CT 단자부를 이용한 Semi-내장형 UHF PD 센서 개발 및 적용)

  • Kang, W.J.;Lee, D.H.;Lee, Y.H.;Shin, Y.S.;Kim, Y.G.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2038-2039
    • /
    • 2007
  • In this work, a novel semi-internal type UHF PD sensor has been proposed and related investigations has been performed in order to detect the partial discharges that could be possibly produced at the insulation system of the gas insulated switchgear(GIS). This sensor was designed to mount on the CT terminal hole of GIS using the spiral antenna theory. Therefore this type sensor can be install on GIS during the power apparatus has been operation and better sensitivity compare to the commercial external type UHF PD sensor.

  • PDF

Non-dispersive infrared carbon dioxide sensor with an externally exposed optical cavity (광 도파관이 외부로 노출된 구조를 가지는 비분산적외선 이산화탄소 센서)

  • Jung, Dong Geon;Lee, Junyeop;Do, Nam Gon;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.456-460
    • /
    • 2021
  • In this study, a Non-Dispersive Infrared (NDIR) Carbon Dioxide (CO2) sensor with an externally exposed optical cavity is proposed for improving sensitivity. NDIR CO2 sensors with high performance must use a lamp-type infrared (IR) source with a strong IR intensity. However, a lamp-type IR source generates high thermal energy that induces thermal noise, interfering with the accuracy of the CO2 concentration measure. To solve this problem, the optical cavity of the NDIR CO2 sensor is exposed to quickly dissipate heat. As a result, the proposed NDIR CO2 sensor has a shorter warm-up time and a higher sensitivity compared to the conventional NDIR CO2 sensor.

A Study of Rotating Arc Sensor Using Fuzzy Controller for$CO_2$ Arc Welding ($CO_2$ 아크 용접에서 퍼지 제어기를 이용한 회전 아크센서에 관한 연구)

  • Choi Youngsoo;Park Hyunsung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.110-117
    • /
    • 2004
  • In automatic welding process using a robot, seam tracking is one of the important parts. Sensor for seam tracking is divided broadly into two categories as non contact sensor and contact sensor. The arc sensor is one of the non contact sensors, and it can be applied in weaving arc and rotating arc welding process. In such the arc sensors, rotating arc sensor can be applied to high speed welding over tens of Hz. The decrease of self regulation by high rotating speed causes to improve accuracy and response of sensor. In this study, fuzzy controller was used to track the seam for the $CO_2$ arc welding which had unstable arc. It could be shown that the rotating arc sensor was better than the weaving arc sensor.

Low Power NDIR CO2 Sensor Using LED Light Source with a Smart Device Interface (스마트 기기와 결합 가능한 LED 광원을 사용하는 저전력용 비분산 적외선 CO2센서)

  • Kim, Jong-heon;Lee, Chan-joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1606-1612
    • /
    • 2015
  • In this paper, a portable high efficiency nondispersive infrared(NDIR) $CO_2$ sensor module with a smart device interface is developed. For low power consumption design, an IR LED was used instead of tungsten lamp for light source and an optical waveguide optimized to the sensor module is designed. With the smart device interface, power of the sensor module is applied from the battery of smart phone. The measured data of the sensor module such as $CO_2$ concentration, temperature, and humidity are displayed on the smart phone using android application. From measured results, the developed sensor module shows ${\pm}60ppm$ tolerance error from 0 to 3,000ppm $CO_2$ concentration range among $-10^{\circ}C$ and $50^{\circ}C$ ranges.