• Title/Summary/Keyword: CO sensor

Search Result 1,716, Processing Time 0.031 seconds

A Study on the USN Zigbee Sensor Node for Transmission to Harmful Gas(CO, CO2) Sensing Data (유해가스(CO, CO2) 감지정보 전송을 위한 USN 지그비센서노드 구현)

  • Cheon, Dong-Jin;Park, Young-Jik;Lee, Seung-Ho;Kim, Jeong-Seop;Kwak, Dong-Kurl;Jung, Do-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1302-1308
    • /
    • 2010
  • In this study, Zigbee Sensor Node to transmit harmful gases CO and $CO_2$ information using wireless communication within the ground and underground structures were developed. Wireless communication protocol was used Zigbee Stack included IEEE 802. 15.4 MAC protocol. For wireless transmission of detected harmful gas signal from ADC of MCU was implemented Zigbee Sensor Node that was developed protocol using Serial-Port-Profile(SPP) here. The proposed Zigbee Sensor Node was verified transmission distance from experiments. Transmission distance was into 90m in experiments. Distance experiments were measured at 10m intervals using sine & pulse wave input signal at indoors. The proposed Route Sensor Node was applied mesh routing protocol. When built up USN(Ubiquitous Sensor Network)using Route Sensor Node, transmission distance was not limited. On the experimental results, harmful gas values between direct measurements and USN measurements were consistent. The semiconductor CO sensor and N-DIR $CO_2$ sensor module as a harmful sensor was used. Therefore, the proposed Zigbee Sensor Node was verified about reliability and validity to build USN for transmission of harmful gas information.

Bi-electrolyte Carbon Dioxide Gas Sensor Based on Paste Sodium-Beta Alumina and Yttria-stabilized Zirconia

  • Han, Hyeuk Jin;Park, Chong Ook
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.170-172
    • /
    • 2014
  • $CO_2$ sensor was used only one solid electrolyte in many cases. To improve the sensing characteristics of $CO_2$ sensors, solid electrolyte $CO_2$ sensor has been developed by bi-electrolyte type sensor using Na-Beta-alumina and YSZ. However, in many further studies, bi-electrolyte type sensor was made by pellet pressed by press machine and additional treatment for formation of interface. In the aspect of mass production, using thick film and additional treatment is not suitable. In this study, $CO_2$ sensor was fabricated by bi-electrolyte structure which was made by an NBA paste layer deposited on YSZ pellet and fired at $1650^{\circ}C$ for 2 hour. The formation of stable interface between YSZ and NBA were confirmed by SEM image. When the type IV electrochemical cell arrangement represented by $CO_2,O_2,Pt{\mid}Li_2CO_3-CaCO_3{\parallel}NBA{\parallel}YSZ{\mid}O_2,Pt$ is used to measure the $CO_2$ concentration in air. This sensor EMF should depend only on the concentration of $CO_2$ by logarithmic. Also, sensor shows $P_{CO_2}$ and EMF relationship like nerstian reaction at a temperature of $450^{\circ}C$.

A Fabrication of IR $CO_2$ Sensor based on the MEMS and Characteristic Evaluation (MEMS 기반의 IR $CO_2$ 센서 제작 및 특성 평가)

  • Kim Shin-Keun;Han Yong-Hee;Moon Sung-Wook
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.232-237
    • /
    • 2005
  • In this paper, we fabricated $CO_2$ gas sensor based on the MEMS infrared sensor and characterized its electrical and $CO_2$-sensing properties. The fabricated $CO_2$ gas sensor by MEMS technique has many advanges over NDIR(nondispersive) $CO_2$ sensor such as monolithic fabrication, very high selectivity on $CO_2$, low power consumption and compact system. Microbolometer by surface micromachining was fabricated for gas detector and $CO_2$ filter chip by bulk micromachining was fabricated for signal referencing. By using the proposed and fabricated gas sensor, we are expected to measure $CO_2$ concentration more accurately with high reliability.

The Interaction of CO to the Co(salen) Complex in to PEDOT:PSS Film and Sensor Application

  • Memarzadeh, Raheleh;Panahi, Farhad;Javadpour, Sirus;Ali, Khalafi-Nezhad;Noh, Hui-Bog;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1297-1302
    • /
    • 2012
  • The interaction between carbon monoxide (CO) and a cobalt-salen complex (Co(salen)) was studied and applied to detect CO. The metal complex doped PEDOT:PSS film exhibited good sensitivity to CO and differentiate CO from other gases. The response of the composite to CO was reversible (RSD < 5%) change in resistance upon removal of CO gas from the test chamber. The effects of adding Co(salen) in the probe film on the response of the sensor were investigated using AFM, XPS, and FT-IR spectroscopy. The sensitivity of the sensor increased as the Co(salen) concentration enhanced as it increased from 0.0 to 1.5 wt. %, where the highest sensitivity ($%{\Delta}R/R_o$) of $-25.0{\pm}0.05%$ was achieved with 1.0 wt. % Co(salen). The sensor containing probe exhibited a linear response ($R^2$ = 0.983) in the range of 0.5 to 10.0% CO (v/v) $N_2$, and the detection limit was 1.74% CO (v/v) in $N_2$.

NiO(Co0.25Mn0.75)2O3 and BaSrTiO3 thick films on alumina substrate as temperature and humidity ceramic multisensors

  • Oh, Young-Jei;Lee, Deuk-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • $NiO{\cdot}(Co_{0.25}Mn_{0.75})_2O_3$(Mn-Ni-Co) and $Ba_{0.5}Sr_{0.5}TiO_3$(BST) thick films were screen printed on Pt patterned alumina substrate to investigate the effects of sintering temperature on humidity and temperature sensing properties of ceramic sensors. A raise in sintering temperature increased resistance and B constant of the Mn-Ni-Co temperature sensor. This may have derived from the synergic effects of the reduction in charge carriers caused by the substitution of Co for Mn as well as the formation of microcracks from the difference in thermal expansion coefficients. Dependence of resistance on humidity of the Mn-Ni-Co temperature sensor, however, was not found. BST films sintered at temperatures in the range of $1100^{\circ}C$ to $1150^{\circ}C$ showed excellent humidity sensing properties. The BST humidity sensor was faster in its response than the Mn-Ni-Co temperature sensor. The humidity sensor, however, proved to be unstable under various temperatures, suggesting a need for a temperature stabilizing device. In contrast, the Mn-Ni-Co temperature sensor was stable under humid conditions.

Performance Improvement of CO Sensor Signal Conditioner for Early Fire Detection System (조기화재 감시시스템을 위한 CO센서의 시그널컨디셔너 성능개선)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.82-87
    • /
    • 2017
  • This paper presents performance improvement of CO gas sensor signal conditioner for early fire warning system. The warning system is based on the CO sensor and its advanced signal conditioning modules network that employ electochemical gas sensor. The electochemical has advantage of having a linear output and operating with a low consumption and fast response. This electrochemical gas sensor contains a gas membrane and three electrodes(working, counter, reference electrode) in contact with an electrolyte. To use a three-electrode sensor, a voltage has to be applied between the working and the reference electrode according to the specification of the sensor. In this paper, we designed these requirements that should be considered in temperature compensation algorithm and electrode measurement of CO sensor modules by using advanced signal conditioning method included 3-electrode. Simulation and experimental results show that signal conditioner of CO sensor module using 3-electrode have a advantage linearity, sensitivity and stability, fast response etc..

Temperature Dependency of Non-dispersive Infrared Carbon Dioxide Gas Sensor by using Infrared Sensor for Compensation (보상용 적외선 센서를 사용한 비분산 적외선 이산화탄소 센서의 온도특성)

  • Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.124-130
    • /
    • 2016
  • NDIR $CO_2$ gas sensor was built with ASIC implemented thermopile sensor which included temperature sensor and unique elliptical waveguide structures in this paper. The temperature dependency of dual infrared sensor module ($CO_2$ and reference IR sensors) has been characterized and its output voltage characteristics according to the temperature and gas concentration were proposed for the first time. NDIR $CO_2$ gas and reference IR sensors showed linear output voltages according to the variation of ambient temperatures from 243 K to 333 K and their slopes were 14.2 mV/K and 8.8 mV/K, respectively. The output voltages of temperature sensor also presented a linear dependency according to the ambient temperature and could be described with V(T)=-3.191+0.0148T(V). The output voltage ratio between $CO_2$ and reference IR sensors revealed irrelevant to the changes of ambient temperatures and gave a constant value around 1.6255 with standard deviation 0.008 at 0 ppm. The output voltage of $CO_2$ gas sensor at zero ppm $CO_2$ gas consisted of two components; one is caused by the HPB (half pass-band) of IR filter and the other is attributed to the part of $CO_2$ absorption wavelength. The characteristics of output voltages of $CO_2$ gas sensor could be accurately modeled with three parameters which are dependent upon the ambient temperatures and represented small average error less than 1.5% with 5% standard deviation.

CoAP-based Time Synchronization Algorithm in Sensor Network (센서 네트워크에서의 CoAP 기반 시각 동기화 기법)

  • Kim, Nac-Woo;Son, Seung-Chul;Park, Il-Kyun;Yu, Hong-Yeon;Lee, Byung-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.39-47
    • /
    • 2015
  • In this paper, we propose a new time synchronization algorithm using CoAP(constrained-application protocol) in sensor network environment, which handles a technique that synchronizes an explicit timestamp between sensor nodes not including an additional module for time-setting and sensor node gateway linked to internet time server. CoAP is a standard protocol for sensor data communication among sensor nodes and sensor node gateway to be built much less memory and power supply in constrained network surroundings including serious network jitter, packet losses, etc. We have supplied an exact time synchronization implementation among small and cheap IP-based sensor nodes or non-IP based sensor nodes and sensor node gateway in sensor network using CoAP message header's option extension. On behalf of conventional network time synchronization method, as our approach uses an exclusive protocol 'CoAP' in sensor network, it is not to become an additional burden for synchronization service to sensor nodes or sensor node gateway. This method has an average error about 2ms comparing to NTP service and offers a low-cost and robust network time synchronization algorithm.

Development of Optical Sensor to Detect the Arc Flash (Arc Flash 감지용 광센서 개발)

  • Lee, Hyun-Wook;Jeong, Young-Woo;Shin, Yang-Sop;Kim, Yeong-Keun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.221-221
    • /
    • 2010
  • 수배전반 내부에서 Arc 사고 발생시 동반되는 광신호를 검출할 수 있는 광센서를 개발하였다. 개발된 광센서는 특정 부위에 설치되어 해당 위치에서 발생하는 광신호를 검출하는 Point Sensor와 넓은 범위를 감시할 수 있는 Loop Sensor의 두 가지 형태로 구성되어 있다. 두 가지 모두 광섬유를 통하여 계전기 등에 부착되며, 일반 통신용 광섬유보다 큰 core를 갖는 특수 광섬유가 사용되었다. Point Sensor는 광섬유 끝단에 부착된 Cap에 의해 광신호가 검출되고, Loop Sensor는 광섬유 자체가 Sensor로 사용되어 광신호의 검출 및 전승을 수행한다. Point Sensor에 부착되는 Cap은 보다 넓은 범위 감시하고, 광신호 발생 위치에 따른 편차를 줄일 수 있는 형태로 설계되었다.

  • PDF

A Study on the Adaptability of the CO Sensor as A Fire Detection Sensor According to the Test Fire Source of UL 268 (UL 268 시험화원에 따른 CO센서의 화재감지센서로서의 적용성에 관한 연구)

  • Lee, Chun-Ha;Sung, Want-Ki;Lee, Jong-Hwa;Kim, Hyeong-Gweon;Jee, Seung-Wook;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.54-63
    • /
    • 2014
  • The purpose of this study is to test the adaptability of the CO sensor as a fire detector by analyzing its sensing characteristics on fire. In order to test the applicability, we designed and made a fire testing ground whose size is similar to that regulated by UL 268, carried out real fire tests suggested by UL 268, and conducted a comparison analysis on the sensing characteristics between the CO sensor and a photoelectric smoke detector by different types of fire source. The experiment result to the sensing characteristics of the CO sensor is about twice to three times faster than that of the photoelectric smoke detector, proceeding with incomplete combustion such as paper and wood fire source in the initial fire. Especially in case of wood smoldering fire, sensing characteristics of the CO sensor is very excellent.