• Title/Summary/Keyword: CO2

Search Result 5,127, Processing Time 0.035 seconds

Interrelationship between Kimchi Ripening and CO2 Concentration of the Headspace in Flexible Packages Included with CO2 Absorber (CO2 흡수제 함유 김치포장에서 CO2 농도와 제품 숙성도의 상호관련성)

  • Jung, Soo Yeon;Lee, Dong Sun;An, Duck Soon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.2
    • /
    • pp.71-76
    • /
    • 2020
  • CO2 concentration in kimchi package has emerged recently as a potential index of product ripening to be monitored or sensed in intelligent packaging. Considering that addition of CO2 absorber into the flexible kimchi package changes behavior of its CO2 concentration, ripening of kimchi in total acidity, package CO2 concentration in partial pressure (PCO2) and package volume at 10℃ were estimated by mathematical model for two size packages included with different CO2 absorbers. In small size package containing 0.5 kg of kimchi, relatively less gas permeable low density polyethylene (LDPE) sachet of the absorber was found to give rise of PCO2 linearly correlated with acidity at acceptable conditions of absorber amount and size. The levels of PCO2 at optimum ripening were different with absorber amount. However, highly gas permeable microporous spunbonded film (Tyvek) sachet did not show the linear relationship except a condition of 1.5 g of CO2 absorbent. In large size package containing 2.0 kg, absorber sachets of LDPE and Tyvek could give the linear relationship between product acidity and package PCO2 but at different levels (PCO2 of package with LDPE sachet: 0.46~0.79 bar, PCO2 of package with Tyvek sachet: 0.00~0.75 bar). The PCO2 at optimal ripening was found to be less variable with LDPE sachets than with Tyvek ones. Use of package CO2 concentration as an indicator of kimchi ripening was shown to be possible on the limited conditions where the linear relationship between them is established or confirmed.

Comparison of Growth and Freshness Characteristics as Affected by CO2 Treatment during Cultivation on Radish Sprout Vegetable (무 싹채소 탄산 가스 처리에 따른 생육과 수확후 품질 특성 비교)

  • Lee, Jung-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • As sprout vegetables of interest growing, its maintaining the quality of the technology was needed to solve the problem of increasing growth and maintain quality after harvest. This experiment proved that the quality of radish sprout vegetable was affected by CO2 treatment during cultivation. Thus, the effect of CO2 treatment during cultivation on postharvest quality of radish sprout vegetable was investigated in terms of the quality changes in weight loss, gas partial pressure, SPAD, hue angle external appearance during storage at polypropylene film (thickness 30 ㎛) at 10℃. CO2 treatment used the way to gas with 700 ppm or carbonated water with 700 ppm and 1,400 ppm. The study revealed that growths on CO2 treated plant were more than those of non-treatment on stem length. After harvesting, the CO2 treated plant and control growing little different characteristics on fresh weight, plant length and so on. However, there were no differences between the CO2 treated plant and control on the Fv/Fm and SOD (superoxide dismutase). In gas partial pressure, the O2 consumption and CO2 accumulation of the CO2 treated plant tended to be more than that of non-treated plant. This study also checked that after packaging, the effects of CO2 treatment during cultivation on the quality of radish sprout vegetable was not significant. However, there were tended to CO2 treatments were lower value compared to control on SPAD, hue angle and general appearance. CO2 treatments of radish sprouting vegetable before harvest were improve growth of stem length, but ones were not improving the maintain of quality on radish sprout vegetable during shelf-life period. The results indicated that CO2 treatment only affected stem elongation until radish sprout vegetable its growth.

Analysis of CO2 Emission and Effective CO2 Capture Technology in the Hydrogen Production Process (수소생산 공정에서의 CO2 배출처 및 유효포집기술 분석)

  • Kyung Taek Woo;Bonggyu Kim;Youngseok So;Munseok Baek;Seoungsoo Park;Hyejin Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.77-83
    • /
    • 2023
  • Energy consumption is increased by rapid industrialization. As a result, climate change is accelerating due to the increase in CO2 concentration in the atmosphere. Therefore, a shift in the energy paradigm is required. Hydrogen is in the spotlight as a part of that. Currently 95% of hydrogen is fossil fuel-based reforming hydrogen which is accompanied by CO2 emissions. This is called gray hydrogen, if the CO2 is captured and emission of CO2 is reduced, it can be converted into blue hydrogen. There are 3 technologies to capture CO2: absorption, adsorption and membrane technology. In order to select CO2 capture technology, the analysis of the exhaust gas should be carried out. The concentration of CO2 in the flue gas from the hydrogen production process is higher than 20%if water is removed as well as the emission scale is classified as small and medium. So, the application of the membrane technology is more advantageous than the absorption. In addition, if LNG cold energy can be used for low temperature CO2 capture system, the CO2/N2 selectivity of the membrane is higher than room temperature CO2 capture and enabling an efficient CO2 capture process. In this study, we will analyze the flue gas from hydrogen production process and discuss suitable CO2 capture technology for it.

Corrosion Protection Properties of Co3O4 and CoFe2O4 Nanoparticles for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloys

  • Thu Thuy Thai;Anh Truc Trinh;Thi Thanh Tam Pham;Hoan Nguyen Xuan
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.90-98
    • /
    • 2023
  • In this study, cobalt oxide (Co3O4) and cobalt-doped magnetite (CoFe2O4) nanoparticles were synthesized by a hydrothermal method. They were then used as corrosion inhibitors for corrosion protection of AA2024-T3 aluminum alloys. These obtained nanoparticles were characterized by x-ray diffraction, field-emission scanning electron microscopy, and Zeta potential measurements. Corrosion inhibition activities of Co3O4 and CoFe2O4 nanoparticles were determined by performing electrochemical measurements for bare AA2024-T3 aluminum alloys in 0.05 M NaCl + 0.1 M Na2SO4 solution containing Co3O4 or CoFe2O4 nanoparticles. Corrosion protection for AA2024-T3 aluminum alloys by a water-based epoxy with or without the synthesized Co3O4 or CoFe2O4 nanoparticles was investigated by electrochemical impedance spectroscopy during immersion in 0.1 M NaCl solution. The corrosion protection of epoxy coating deposited on the AA2024-T3 surface was improved by incorporating Co3O4 or CoFe2O4 nanoparticles in the coating. The corrosion protection performance of the epoxy coating containing CoFe2O4 was higher than that of the epoxy coating containing Co3O4.

CO2 Separation Performance of PEBAX Mixed Matrix Membrane Using PEI-GO@ZIF-8 as Filler (충진물로 PEI-GO@ZIF-8를 사용한 PEBAX 혼합막의 CO2 분리 성능)

  • Eun Sun Yi;Se Ryeong Hong;Hyun Kyung Lee
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.23-33
    • /
    • 2023
  • In this study, a mixed matrix membrane was prepared by varying the contents of PEI-GO@ZIF-8 synthesized in PEBAX 2533, and the permeation characteristics of N2 and CO2 were studied. The N2 permeability of the PEBAX/PEIGO@ZIF-8 mixed matrix membrane decreased as the PEI-GO@ZIF-8 content increased, and the CO2 permeability showed different trends depending on the PEI-GO@ZIF-8 content. The CO2 permeability increased in pure PEBAX membrane up to PEBAX/PEI-GO@ZIF-8 0.1 wt%, but decreased at the subsequent content. The PEI-GO@ZIF-8 0.1 wt% mixed matrix membrane had a CO2 permeability of 221.9 Barrer and a CO2/N2 selectivity of 60.0, showing the highest permeation properties with improved CO2 permeability and CO2/N2 selectivity among the prepared mixed matrix membrane and we obtained a result that reached the Robeson upper-bound. This is due to the -COOH, -O-, and -OH functional groups of GO and the amine group bonded to PEI, which interact friendly with CO2, and the effect of ZIF-8, which causes gate-opening for CO2 while the fillers are evenly dispersed in PEBAX.

Development of High-Permeability Ceramic Hollow Fiber and Evaluation of CH4/CO2 Separation Characteristics of Membrane Contactor Process (고투과성 세라믹 중공사 개발과 접촉막 공정의 CH4/CO2 분리 특성 평가)

  • Lee, Seung Hwan;Kim, Min Kwang;Jeong, Byeong Jun;Zhuang, Xuelong;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.269-275
    • /
    • 2020
  • In this study, CO2 separation experiment was performed on a CH4/CO2 mixed gas using a ceramic hollow fiber membrane contactor (HFMC). In order to fabricate high-performance HFMC, experiments were conducted to manufacture high-permeability hollow fiber membranes, and the prepared hollow fiber membranes were evaluated through N2 gas permeation experiments. HFMC for CH4/CO2 mixed gas separation was manufactured using the manufactured high-permeability hollow fiber membrane. In the experiment, mixed gas of CH4/CO2 (34.5% CO2, CH4 balance) and monoetanolamine (MEA) was used, and the effect of CO2 removal efficiency on the flow rate of the absorbent was evaluated. The CO2 removal efficiency increased as the liquid flow rate increased, and the CO2 absorption flux also increased with the liquid flow rate.

Distribution and Behavior of Soil CO2 in Pohang area: Baseline Survey and Preliminary Interpretation in a Candidate Geological CO2 Storage Site (포항 지역 토양 CO2의 분포 및 거동 특성 연구: CO2 지중저장 부지 자연 배경 조사 및 예비 해석)

  • Park, Jinyoung;Sung, Ki-Sung;Yu, Soonyoung;Chae, Gitak;Lee, Sein;Yum, Byoung-Woo;Park, Kwon Gyu;Kim, Jeong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.49-60
    • /
    • 2016
  • Distribution and behavior of baseline soil CO2 were investigated in a candidate geologic CO2 storage site in Pohang, with measuring CO2 concentrations and carbon isotopes in the vadose zone as well as CO2 fluxes and concentrations through ground surface. This investigation aimed to assess the baseline CO2 levels and to build the CO2 monitoring system before injecting CO2. The gas in the vadose zone was collected using a peristaltic pump from the depth of 60 cm below ground surface, and stored at gas bags. Then the gas components (CO2, O2, N2, CH4) and δ13CCO2 were analyzed using GC and CRDS (cavity ringdown spectroscopy) respectively in laboratory. CO2 fluxes and CO2 concentrations through ground surface were measured using Li-COR in field. In result, the median of the CO2 concentrations in the vadose zone was about 3,000 ppm, and the δ13CCO2 were in the wide range between −36.9‰ and −10.6‰. The results imply that the fate of CO2 in the vadose zone was affected by soil property and vegetations. CO2 in sandy or loamy soils originated from the respiration of microorganisms and the decomposition of C3 plants. In gravel areas, the CO2 concentrations decreased while the δ13CCO2 increased because of the mixing with the atmospheric gas. In addition, the relation between O2 and CO2, N2, and the relation between N2/O2 and CO2 implied that the gases in the vadose zone dissolved in the infiltrating precipitation or the soil moisture. The median CO2 flux through ground surface was 2.9 g/m2/d which is lower than the reported soil CO2 fluxes in areas with temperate climates. CO2 fluxes measured in sandy and loamy soil areas were higher (median 5.2 g/m2/d) than those in gravel areas (2.6 g/m2/d). The relationships between CO2 fluxes and concentrations suggested that the transport of CO2 from the vadose zone to ground surface was dominated by diffusion in the study area. In gravel areas, the mixing with atmospheric gases was significant. Based on this study result, a soil monitoring procedure has been established for a candidate geologic CO2 storage site. Also, this study result provides ideas for innovating soil monitoring technologies.

Numerical Analysis of Flow Characteristics in an Injection Tubing during Supercritical CO2 Injection: Application of Demonstration-scale CO2 Storage Project in the Pohang Basin, Korea (초임계 상태의 CO2 주입시 주입관내 유동 특성의 수치해석적 연구: 포항분지 중소규모 CO2 지중저장 실증 사업에 적용)

  • Jung, Woodong;Sung, Wonmo;Han, Jeongmin;Song, Youngsoo;Wang, Jihoon
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.9-17
    • /
    • 2022
  • This paper is the continuation of our previous paper, which we refer to as numerical analysis of phase behavior and flow properties in an injection tubing during gas phase CO2 injection. Our study in this paper show the results during supercritcal CO2 injection under the same project. Geological CO2 storage technology is one of the most effective method to decrease climate change due to high injectivity and storage capacity and economics. A demonstration-scale CO2 storage project was performed in a deep aquifer in the Pohang basin, Korea for a technological development in a large-scale CO2 storage project. A problem to consider in the early stage design of the project was to analyze CO2 phase change and flow characteristics during CO2 injection. To solve this problem, injection conditions were decided by calculating injection rate, pressure, temperature, and thermodynamic properties. For this research, we simulated and numerically analyzed CO2 phase change from liquid to supercritical phase and flow characteristics in injection tubing using OLGA program. Our results provide discharge pressure and temperature conditions of CO2 injection combined with a pressure of an aquifer.

Determination of Carbon Dioxide Concentration in CO2 Supplemental Greenhouse for Tomato Cultivation during Winter and Spring Seasons (겨울과 봄철의 CO2 시비 토마토 온실에서 온도에 따른 CO2 농도 구명)

  • Su-Hyun Choi;Young-Hoe Woo;Dong-Cheol Jang;Young-Ae Jeong;Seo-A Yoon;Dae-Hyun Kim;Ho-Seok Seo;Eun-Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.416-422
    • /
    • 2023
  • This study was aimed to determine the changes in CO2 concentration according to the temperatures of daytime and nighttime in the CO2 supplemental greenhouse, and to compare calculated supplementary CO2 concentration during winter and spring cultivation seasons. CO2 concentrations in experimental greenhouses were analyzed by selecting representative days with different average temperatures due to differences in integrated solar radiation at the growth stage of leaf area index (LAI) 2.0 during the winter season of 2022 and 2023 years. The CO2 concentration was 459, 299, 275, and 239 µmol·mol-1, respectively at 1, 2, 3, and 4 p.m. after the CO2 supplementary time (10:00-13:00) under the higher temperature (HT, > 18℃ daytime temp. avg. 31.7, 26.8, 23.8, and 22.4℃, respectively), while it was 500, 368, 366, 364 µmol·mol-1, respectively under the lower temperature (LT, < 18℃ daytime temp. avg. 22.0, 18.9, 15.0, and 13.7℃, respectively), indicating the CO2 reduction was significantly higher in the HT than that of LT. During the nighttime, the concentration of CO2 gradually increased from 6 p.m. (346 µmol·mol-1) to 3 a.m. (454 µmol·mol-1) in the HT with a rate of 11 µmol·mol-1 per hour (240 tomatoes, leaf area 330m2), while the increase was very lesser under the LT. During the spring season, the CO2 concentration measured just before the start of CO2 fertilization (7:30 a.m.) in the CO2 enrichment greenhouse was 3-4 times higher in the HT (>15℃ nighttime temperature avg.) than that of LT (< 15℃ nighttime temperature avg.), and the calculated amount of CO2 fertilization on the day was also lower in HT. All the integrated results indicate that CO2 concentrations during the nighttime varies depending on the temperature, and the increased CO2 is a major source of CO2 for photosynthesis after sunrise, and it is necessary to develop a model formula for CO2 supplement considering the nighttime CO2 concentration.

Enhanced Electrochemical CO2 Reduction on Porous Au Electrodes with g-C3N4 Integration (g-C3N4 도입에 따른 다공성 Au 전극의 전기화학적 이산화탄소 환원 특성)

  • Jiwon Heo;Chaewon Seong;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.78-84
    • /
    • 2024
  • The electrochemical reduction of carbon dioxide (CO2) is gaining attention as an effective method for converting CO2 into high-value carbon compounds. This paper reports a facile meth od for synth esizing and characterizing g-C3N4-modified porous Au (pAu) electrodes for electrochemical CO2 reduction using e-beam deposition and anodization techniques. The fabricated pAu@g-C3N4 electrode (@ -0.9 VRHE) demonstrated superior electrochemical performance compared to the pAu electrode. Both electrodes exhibited a Faradaic efficiency (FE) of 100% for CO production. The pAu@g-C3N4 electrode achieved a maximum CO production rate of 9.94 mg/s, which is up to 2.2 times higher than that of the pAu electrode. This study provides an economical and sustainable approach to addressing climate change caused by CO2 emissions and significantly contributes to the development of electrodes for electrochemical CO2 reduction.