• 제목/요약/키워드: CNT-

검색결과 1,329건 처리시간 0.037초

High Strength Electrospun Nanofiber Mats via CNT Reinforcement: A Review

  • Pant, Bishweshwar;Park, Mira;Park, Soo-Jin;Kim, Hak Yong
    • Composites Research
    • /
    • 제29권4호
    • /
    • pp.186-193
    • /
    • 2016
  • The development of electrospun nanofibers with improved mechanical properties is of great scientific and technological interest because of their wide-range of applications. Reinforcement of carbon nanotubes (CNTs) into the polymer matrix is considered as a promising strategy for substantially enhancing the mechanical properties of resulting CNTs/polymer composite mats on account of extraordinary mechanical properties of CNTs such as ultra-high Young's modulus and tensile strengths. This paper summarizes the recent developments on electrospun CNTs/polymer composite mats with an emphasis on their mechanical properties.

탄소나노튜브의 기계적 물성에 관한 연구 (A Study on Mechanical Properties of Carbon Nanotubes)

  • 남승훈;김동균;박종서;김엄기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1059-1064
    • /
    • 2003
  • This paper presents an overview of the mechanical properties of carbon nanotubes. The characteristics of carbon nanotubes were briefly introduced. We then present briefly the experimental techniques used to measure mechanical properties and the results obtained by other researchers. A carbon nanotube is too small to be pulled apart with standard tension devices. Manipulators should be used for mechanical testing. We introduced manipulation methods using nanomanipulators under field-emission scanning-electron microscope.

  • PDF

탄소나노튜브의 역학적 거동에 관한 분자동역학 전산모사 (Molecular Dynamics Simulations on the Mechanical Behavior of Carbon Nanotube)

  • 박종연;이영민;전석기;김성엽;임세영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1083-1088
    • /
    • 2003
  • Molecular dynamics simulations on the deformation behavior of single-walled carbon nanotube are performed. Formation energies of CNT's by interatomic potentials are computed and compared with ab initio results. Bending and axial compression are applied under lattice statics and NVT ensemble conditions. Specifically, we focus on the mechanism of kink formation in bending. The simulation results are comprehensively explained in the framework of atomistic energetics. The effects of temperature and chirality on the deformation of carbon nanotube are also studied.

  • PDF

탄소 나노 튜브의 영 계수 측정에 관한 연구 (A Study on the Measurement of Young's Modulus of Carbon Nano Tube)

  • 이준석;최재성;강경수;곽윤근;김수현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.682-685
    • /
    • 2003
  • In this paper, we propose the method to measure the Young's modulus of carbon nano tube which was manufactured by chemical vapor deposition. We also made the tungsten tip by electrochemical etching process and the carbon nano tube which was detangled through ultra-sonication with isopropyl alcohol was attached to the tungsten tip. This tip which was composed of tungsten tip and carbon nano tube can be used in Young's modulus measurement by applying DC voltage with counter electrode. The attachment process and measurement of the deflection of carbon nano tube was done under optical microscope.

  • PDF

Buckling response of smart plates reinforced by nanoparticles utilizing analytical method

  • Farrokhian, Ahmad
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.1-12
    • /
    • 2020
  • This article deals with the buckling analysis in the plates containing carbon nanotubes (CNTs) subject to axial load. In order to control the plate smartly, a piezoelectric layer covered the plate. The plate is located in elastic medium which is modeled by spring elements. The Mori-Tanaka low is utilized for calculating the equivalent mechanical characteristics of the plate. The structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The Navier method is applied to obtain the bulking load. The effects of the applied voltage to the smart layer, agglomeration and volume percent of CNT nanoparticles, geometrical parameters and elastic medium of the structure are assessed on the buckling response. It has been demonstrated that by applying a negative voltage, the buckling load is increased significantly.

Current Research on Conducting Polymer-Carbon Nanocomposites for Bioengineering Applications

  • Lee, Seunghyeon;Lee, Sang Kyu;Jang, Daseul;Shim, Bong Sup
    • Elastomers and Composites
    • /
    • 제52권1호
    • /
    • pp.69-80
    • /
    • 2017
  • Conducting polymers and carbon nanomaterials offer a wide range of applications because of their unique soft conducting properties. Specifically, these conducting polymer-carbon nanocomposites have recently been utilized in bioengineering applications, partly because of their improved biocompatibility compared to conventional conducting materials such as metals and ceramics. Based on the assumption that these composites offer an important application potential as functional materials for biomedical devices or even as biomaterials, this review surveys the recent research trends on conducting polymers-carbon nanocomposites, focusing on bioengineering applications such as polyaniline (PANI), poly(3,4-ethylenedioxythiophene) or PEDOT, polypyrrole (Ppy), and carbon nanotubes and graphene.

탄소나노튜브 스마트 복합소재의 전기적 임피던스 변화를 이용한 나노센서의 센싱 특성 연구 (A Study on Sensing Characteristics of Carbon Nanotube Smart Composite Nano Sensors Based on Electrical Impedance Measurement)

  • 강인필
    • 동력기계공학회지
    • /
    • 제13권1호
    • /
    • pp.65-71
    • /
    • 2009
  • To address the need for new intelligent sensing, this paper introduces nano sensors made of carbon nanotube (CNT) composites and presents their preliminary experiments. Having smart material properties such as piezoresistivity, chemical and bio selectivity, the nano composite can be used as smart electrodes of the nano sensors. The nano composite sensor can detect structural deterioration, chemical contamination and bio signal by means of its impedance measurement (resistance and capacitance). For a structural application, the change of impedance shows specific patterns depending on the structural deterioration and this characteristic is available for an in-situ multi-functional sensor, which can simultaneously detect multi symptoms of the structure. This study is anticipated to develop a new nano sensor detecting multiple symptoms in structural, chemical and bio applications with simple electric circuits.

  • PDF

Carbon nanotubes-properties and applications: a review

  • Ibrahim, Khalid Saeed
    • Carbon letters
    • /
    • 제14권3호
    • /
    • pp.131-144
    • /
    • 2013
  • The carbon nanotube (CNT) represents one of the most unique inventions in the field of nanotechnology. CNTs have been studied closely over the last two decades by many researchers around the world due to their great potential in different fields. CNTs are rolled graphene with $SP^2$ hybridization. The important aspects of CNTs are their light weight, small size with a high aspect ratio, good tensile strength, and good conducting characteristics, which make them useful as fillers in different materials such as polymers, metallic surfaces and ceramics. CNTs also have potential applications in the field of nanotechnology, nanomedicine, transistors, actuators, sensors, membranes, and capacitors. There are various techniques which can be used for the synthesis of CNTs. These include the arc-discharge method, chemical vaporize deposition (CVD), the laser ablation method, and the sol gel method. CNTs can be single-walled, double-walled and multi-walled. CNTs have unique mechanical, electrical and optical properties, all of which have been extensively studied. The present review is focused on the synthesis, functionalization, properties and applications of CNTs. The toxic effect of CNTs is also presented in a summarized form.

탄소나노튜브 전극에 의한 진공 방전 특성의 평가 (Electrical discharge properties in vacuum by carbon nanotube electrodes)

  • 김현진;이상훈;김성진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 반도체 재료 센서 박막재료 전자세라믹스
    • /
    • pp.60-63
    • /
    • 2004
  • Recently, carbon nanotubes(CNTs) have been demonstrated to possess remarkable mechanical and electronic properties, in particular, for field emission applications. Its high aspect ratio and extremely small diameter, hollowness, together with high mechanical strength and high chemical stability, are advantages for use in field emitter. In this paper, we demonstrate electrical discharge properties from carbon nanotube cathode electrodes to use as an emitter electrode of vacuum gauges. Vertically aligned $2{\times}2mm^2$ CNT arrays on the silicon substrate were synthesized by the thermal CVD method on Fe catalytic metal, and a glass patterning by the sand blast method and the silicon/glass anodic bonding processes were applied to make samples with 2 electrodes. The field emission was examined under the vacuum range of $10^{-3}$ Torr.

  • PDF

대면적 전도성 박막의 면저항 정밀측정 (Principle Measurement for Sheet Resistance of Large Size Conductive Thin Films)

  • 강전홍;유광민;이상화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1515-1516
    • /
    • 2015
  • Touch panel 및 Touch screen 등의 투명전극으로 많이 사용되고 있는 ITO(Indium Tin Oxide)나 CNT(Carbon Nano Tube) 등 전도성 박막의 면저항을 쉽고 빠르게 측정하기 위하여 van der Pauw method를 이용한 면저항 측정기를 개발하였다. 이 면저항 측정기는 대면적 시료의 면저항을 측정 할 수 있어 매우 편리하다. 면저항 측정은 주로 Four Point Probe method로 측정하는 것이 일반적이나 본 연구에서는 van der Pauw method를 이용한 측정값과 Four Point Probe method로 측정한 결과를 비교한 결과 1 % 이내에서 일치하였다. 개발된 측정기의 측정 정확도는 지시값의 1.0 % 이하이고, 측정범위는 $2{\Omega}/{\square}{\sim} 5k{\Omega}/{\square}$이다.

  • PDF