Browse > Article
http://dx.doi.org/10.5714/CL.2013.14.3.131

Carbon nanotubes-properties and applications: a review  

Ibrahim, Khalid Saeed (Department of Chemistry, University of Malakand)
Publication Information
Carbon letters / v.14, no.3, 2013 , pp. 131-144 More about this Journal
Abstract
The carbon nanotube (CNT) represents one of the most unique inventions in the field of nanotechnology. CNTs have been studied closely over the last two decades by many researchers around the world due to their great potential in different fields. CNTs are rolled graphene with $SP^2$ hybridization. The important aspects of CNTs are their light weight, small size with a high aspect ratio, good tensile strength, and good conducting characteristics, which make them useful as fillers in different materials such as polymers, metallic surfaces and ceramics. CNTs also have potential applications in the field of nanotechnology, nanomedicine, transistors, actuators, sensors, membranes, and capacitors. There are various techniques which can be used for the synthesis of CNTs. These include the arc-discharge method, chemical vaporize deposition (CVD), the laser ablation method, and the sol gel method. CNTs can be single-walled, double-walled and multi-walled. CNTs have unique mechanical, electrical and optical properties, all of which have been extensively studied. The present review is focused on the synthesis, functionalization, properties and applications of CNTs. The toxic effect of CNTs is also presented in a summarized form.
Keywords
carbon nanotube; synthesis; functionalization; toxic effect of CNTs;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. $C_{60}$: buckminsterfullerene. Nature, 318, 162 (1985). http://dx.doi.org/10.1038/318162a0.   DOI
2 Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.   DOI
3 Radushkevich LV, Lukyanovich VM. O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte (About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate). Zurn Fisic Chim, 26, 88 (1952).
4 Lau AKT, Hui D. The revolutionary creation of new advanced materials--carbon nanotube composites. Composites B, 33, 263 (2002). http://dx.doi.org/10.1016/S1359-8368(02)00012-4.   DOI   ScienceOn
5 Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603 (1993). http://dx.doi.org/10.1038/363603a0.   DOI   ScienceOn
6 Geim AK, Novoselov KS. The rise of graphene. Nature Mater, 6, 183 (2007). http:dx.doi.org/10.1038/nmat1849.   DOI   ScienceOn
7 Sheshmania S, Ashorib A, Fashapoyeha MA. Wood plastic composite using graphene nanoplatelets, Int J Biol Macromol, 58, 6 (2013). http://dx.doi.org/10.1016/j.ijbiomac.2013.03.047.   DOI   ScienceOn
8 Saether E, Frankland SJV, Pipes RB. Transverse mechanical properties of single walled carbon nanotube crystals. Part I: determination of elastic moduli. Compos Sci Technol, 63, 1543 (2003). http://dx.doi.org/10.1016/S0266-3538(03)00056-3.   DOI   ScienceOn
9 Pichler T. Molecular nanostructures: carbon ahead. Nature Mater, 6, 332 (2007). http://dx.doi.org/10.1038/nmat1898.   DOI   ScienceOn
10 Ajayan PM. Bulk metal and ceramics nanocomposites. In: Ajayan PM, Schadler LS, Braun PV, eds. Nanocomposite Science and Technology, Wiley-VCH Verlag GmbH & Co., 1 (2004). http://dx.doi.org/10.1002/3527602127.ch1.   DOI
11 Blase X, Charlier JC, De Vita A, Car R, Redlich P, Terrones M, Hsu WK, Terrones H, Carroll DL, Ajayan PM. Boron-mediated growth of long helicity-selected carbon nanotubes. Phys Rev Lett, 83, 5078 (1999). http://dx.doi.org/10.1103/PhysRevLett.83.5078.   DOI   ScienceOn
12 Akiladevi D, Basak S. Carbon nanotubes (CNTs) production, characterization and its applications. Int J Adv Pharm Sci, 1, 187 (2010). http://dx.doi.org/10.5138/ijaps.2010.0976.1055.01024.
13 Satishkumar BC, Govindaraj A, Nath M, Rao CNR. Synthesis of metal oxide nanorods using carbon nanotubes as templates. J Mater Chem, 10, 2115 (2000). http://dx.doi.org/10.1039/B002868L.   DOI
14 Choi YM, Lee DS, Czerw R, Chiu PW, Grobert N, Terrones M, Reyes-Reyes M, Terrones H, Charlier JC, Ajayan PM, Roth S, Carroll DL, Park YW. Nonlinear behavior in the thermopower of doped carbon nanotubes due to strong, localized states. Nano Lett, 3, 839 (2003). http://dx.doi.org/10.1021/nl034161n.   DOI   ScienceOn
15 Simeonova PP. Update on carbon nanotube toxicity. Nanomedicine, 4, 373 (2009). http://dx.doi.org/10.2217/nnm.09.25.   DOI   ScienceOn
16 Shvedova AA, Kagan VE, Fadeel B. Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol, 50, 63 (2010). http://dx.doi.org/10.1146/annurev.pharmtox.010909.105819.   DOI   ScienceOn
17 Oberdorster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med, 267, 89 (2010). http://dx.doi.org/10.1111/j.1365-2796.2009.02187.x.   DOI   ScienceOn
18 Warheit DB, Sayes CM, Reed KL, Swain KA. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther, 120, 35 (2008). http://dx.doi.org/10.1016/j.pharmthera.2008.07.001.   DOI   ScienceOn
19 Dresselhaus MS, Lin YM, Rabin O, Jorio A, Souza AG, Pimenta MA, Saito R, Samsonidze G, Dresselhaus G. Nanowires and nanotubes. Mater Sci Engg: C, 23, 129 (2003).   DOI   ScienceOn
20 Prasher RS, Hu XJ, Chalopin Y, Mingo N, Lofgreen K, Volz S, Cleri F, Keblinski P. Turning carbon nanotubes from exceptional heat conductors into insulators. Phys Rev Lett, 102, 105901 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.105901.   DOI   ScienceOn
21 Ahmad A, Kholoud MM, Abou E, Reda AA, Abdulrahman AW. Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arabian J Chem, 5, 1 (2012). http://dx.doi.org/10.1016/j.arabjc.2010.08.022.   DOI   ScienceOn
22 Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature, 358, 220 (1992). http://dx.doi.org/10.1038/358220a0.   DOI
23 Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605 (1993). http://dx.doi.org/10.1038/363605a0.   DOI   ScienceOn
24 Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388, 756 (1997).   DOI   ScienceOn
25 Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483.   DOI   ScienceOn
26 Mamalis AG, Vogtlander LOG, Markopoulos A. Nanotechnology and nanostructured materials: trends in carbon nanotubes. Precis Eng, 28, 16 (2004). http://dx.doi.org/10.1016/j.precisioneng.2002.11.002.   DOI   ScienceOn
27 Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G. Large-scale synthesis of aligned carbon nanotubes. Science, 274, 1701 (1996). http://dx.doi.org/10.1126/science.274.5293.1701.   DOI   ScienceOn
28 Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med, 164, 1665 (2001). http://dx.doi.org/10.1164/ajrccm.164.9.2101036.   DOI   ScienceOn
29 Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, Shvedova A, Luster MI, Simeonova PP. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect, 115, 377 (2007). http://dx.doi.org/10.1289/ehp.9688.   DOI   ScienceOn
30 Nemmar A, Hoylaerts MF, Hoet PH, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery B. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med, 166, 998 (2002). http://dx.doi.org/10.1164/rccm.200110-026OC.   DOI   ScienceOn
31 Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol, 3, 423 (2008). http://dx.doi.org/10.1038/nnano.2008.111.   DOI   ScienceOn
32 Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol, 36, 189 (2006). http://dx.doi.org/10.1080/10408440600570233.   DOI   ScienceOn
33 Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci, 101, 4 (2008). http://dx.doi.org/10.1093/toxsci/kfm169.   DOI   ScienceOn
34 Sydlik U, Gallitz I, Albrecht C, Abel J, Krutmann J, Unfried K. The compatible solute ectoine protects against nanoparticleinduced neutrophilic lung inflammation. Am J Respir Crit Care Med, 180, 29 (2009). http://dx.doi.org/10.1164/rccm.200812-1911OC.   DOI   ScienceOn
35 Rao CNR, Govindaraj A, Gundiah G, Vivekchand SRC. Nanotubes and nanowires. Chem Eng Sci, 59, 4665 (2004). http://dx.doi.org/10.1016/j.ces.2004.07.067.   DOI   ScienceOn
36 Xie S, Li W, Pan Z, Chang B, Sun L. Carbon nanotube arrays. Mater Sci Eng A, 286, 11 (2000). http://dx.doi.org/10.1016/S0921-5093(00)00657-2.   DOI   ScienceOn
37 Lee CJ, Lyu SC, Kim HW, Park CY, Yang CW. Large-scale production of aligned carbon nanotubes by the vapor phase growth method. Chem Phys Lett, 359, 109 (2002). http://dx.doi.org/10.1016/S0009-2614(02)00648-6.   DOI   ScienceOn
38 Hahm MG, Hashim DP, Vajtai R, Ajayan PM. A review: controlled synthesis of vertically aligned carbon nanotubes. Carbon Lett, 12, 185 (2011). http://dx.doi.org/10.5714/CL.2011.12.4.185.   과학기술학회마을   DOI   ScienceOn
39 Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature, 382, 54 (1996). http://dx.doi.org/10.1038/382054a0.   DOI
40 Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381, 678 (1996). http://dx.doi.org/10.1038/381678a0.   DOI   ScienceOn
41 Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 46, 439 (2005). http://dx.doi.org/10.1016/j.polymer.2004.11.030.   DOI   ScienceOn
42 Jin FL, Park SJ. Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett, 14, 1 (2013). http://dx.doi.org/10.5714/CL.2012.14.1.001.   DOI   ScienceOn
43 Wepasnick KA, Smith BA, Bitter JL, Howard Fairbrother D. Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem, 396, 1003 (2010). http://dx.doi.org/10.1007/s00216-009-3332-5.   DOI
44 Tong H, McGee JK, Saxena RK, Kodavanti UP, Devlin RB, Gilmour MI. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicol Appl Pharmacol, 239, 224 (2009). http://dx.doi.org/10.1016/j.taap.2009.05.019.   DOI   ScienceOn
45 Fenoglio I, Greco G, Tomatis M, Muller J, Raymundo-Pinero E, Beguin F, Fonseca A, Nagy JB, Lison D, Fubini B. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem Res Toxicol, 21, 1690 (2008). http://dx.doi.org/10.1021/tx800100s.   DOI   ScienceOn
46 Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology, 4, 207 (2010). http://dx.doi.org/10.3109/17435390903569639.   DOI   ScienceOn
47 Kayat J, Gajbhiye V, Tekade RK, Jain NK. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine, 7, 40 (2011). http://dx.doi.org/10.1016/j.nano.2010.06.008.   DOI   ScienceOn
48 Vittorio O, Raffa V, Cuschieri A. Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomedicine, 5, 424 (2009). http://dx.doi.org/10.1016/j.nano.2009.02.006.   DOI   ScienceOn
49 Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science, 272, 523 (1996). http://dx.doi.org/10.1126/science.272.5261.523.   DOI   ScienceOn
50 Chandra B, Bhattacharjee J, Purewal M, Son YW, Wu Y, Huang M, Yan H, Heinz TF, Kim P, Neaton JB, Hone J. Molecular-scale quantum dots from carbon nanotube heterojunctions. Nano Lett, 9, 1544 (2009). http://dx.doi.org/10.1021/nl803639h.   DOI   ScienceOn
51 Choo H, Jung Y, Jeong Y, Kim HC, Ku BC. Fabrication and applications of carbon nanotube fibers. Carbon Lett, 13, 191 (2012). http://dx.doi.org/10.5714/CL.2012.13.4.191.   과학기술학회마을   DOI   ScienceOn
52 Kim KS, Park SJ. Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites. Carbon Lett, 13, 51 (2012). http://dx.doi.org/10.5714/CL.2012.13.1.051.   과학기술학회마을   DOI   ScienceOn
53 Mintmire JW, Dunlap BI, White CT. Are fullerene tubules metallic? Phys Rev Lett, 68, 631 (1992). http://dx.doi.org/10.1103/PhysRevLett.68.631.   DOI   ScienceOn
54 Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic structure of chiral graphene tubules. Appl Phys Lett, 60, 2204 (1992). http://dx.doi.org/10.1063/1.107080.   DOI
55 Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49 (1998). http://dx.doi.org/10.1038/29954.   DOI
56 Schonenberger C, Bachtold A, Strunk C, Salvetat JP, Forro L. Interference and Interaction in multi-wall carbon nanotubes. Appl Phys A, 69, 283 (1999). http://dx.doi.org/10.1007/s003390051003.   DOI   ScienceOn
57 Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett, 77, 666 (2000). http://dx.doi.org/10.1063/1.127079.   DOI
58 Bandaru PR, Daraio C, Jin S, Rao AM. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat Mater, 4, 663 (2005). http://dx.doi.org/10.1038/nmat1450.   DOI   ScienceOn
59 Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 386, 474 (1997). http://dx.doi.org/10.1038/386474a0.   DOI   ScienceOn
60 Delaney P, Di Ventra M, Pantelides ST. Quantized conductance of multiwalled carbon nanotubes. Appl Phys Lett, 75, 3787 (1999). http://dx.doi.org/10.1063/1.125456.   DOI   ScienceOn
61 Cheng Y, Zhou O. Electron field emission from carbon nanotubes. Comptes Rendus Physique, 4, 1021 (2003). http://dx.doi.org/10.1016/S1631-0705(03)00103-8.   DOI   ScienceOn
62 Modi A, Koratkar N, Lass E, Wei B, Ajayan PM. Miniaturized gas ionization sensors using carbon nanotubes. Nature, 424, 171 (2003). http://dx.doi.org/10.1038/nature01777.   DOI   ScienceOn
63 Yue GZ, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu JP, Zhou O. Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based fieldemission cathode. Appl Phys Lett, 81, 355 (2002). http://dx.doi.org/10.1063/1.1492305.   DOI   ScienceOn
64 Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637 (2000). http://dx.doi.org/10.1126/science.287.5453.637.   DOI   ScienceOn
65 Ruoff RS, Tersoff J, Lorents DC, Subramoney S, Chan B. Radial deformation of carbon nanotubes by van der Waals forces. Nature, 364, 514 (1993). http://dx.doi.org/10.1038/364514a0.   DOI   ScienceOn
66 Palaci I, Fedrigo S, Brune H, Klinke C, Chen M, Riedo E. Radial elasticity of multiwalled carbon nanotubes. Phys Rev Lett, 94, 175502 (2005). http://dx.doi.org/10.1103/PhysRevLett.94.175502.   DOI   ScienceOn
67 Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin--nanotube composite. Science, 265, 1212 (1994). http://dx.doi.org/10.1126/science.265.5176.1212.   DOI   ScienceOn
68 Yu MF, Kowalewski T, Ruoff RS. Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force. Phys Rev Lett, 85, 1456 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.1456.   DOI   ScienceOn
69 Yang YH, Li WZ. Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy. Appl Phys Lett, 98, 041901 (2011). http://dx.doi.org/10.1063/1.3546170   DOI   ScienceOn
70 Minary-Jolandan M, Yu MF. Reversible radial deformation up to the complete flattening of carbon nanotubes in nanoindentation. J Appl Phys, 103, 073516 (2008). http://dx.doi.org/10.1063/1.2903438.   DOI   ScienceOn
71 Iijima S, Brabec C, Maiti A, Bernholc J. Structural flexibility of carbon nanotubes. J Chem Phys, 104, 2089 (1996). http://dx.doi.org/10.1063/1.470966.   DOI   ScienceOn
72 Chopra NG, Benedict LX, Crespi VH, Cohen ML, Louie SG, Zettl A. Fully collapsed carbon nanotubes. Nature, 377, 135 (1995). http://dx.doi.org/10.1038/377135a0.   DOI
73 Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon, 33, 925 (1995). http://dx.doi.org/10.1016/0008-6223(95)00021-5.   DOI   ScienceOn
74 Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA (1996).
75 Overney G, Zhong W, Tomanek D. Structural rigidity and low frequency vibrational modes of long carbon tubules. Z Phys D, 27, 93 (1993). http://dx.doi.org/10.1007/BF01436769.   DOI   ScienceOn
76 Robertson DH, Brenner DW, Mintmire JW. Energetics of nanoscale graphitic tubules. Phys Rev B, 45, 12592 (1992). http://dx.doi.org/10.1103/PhysRevB.45.12592.   DOI   ScienceOn
77 Zhu YQ, Sekine T, Kobayashi T, Takazawa E, Terrones M, Terrones H. Collapsing carbon nanotubes and diamond formation under shock waves. Chem Phys Lett, 287, 689 (1998). http://dx.doi.org/10.1016/S0009-2614(98)00226-7.   DOI   ScienceOn
78 Tersoff J. Energies of fullerenes. Phys Rev B, 46, 15546 (1992). http://dx.doi.org/10.1103/PhysRevB.46.15546.   DOI   ScienceOn
79 Falvo MR, Clary GJ, Taylor RM 2nd, Chi V, Brooks FP Jr, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 389, 582 (1997). http://dx.doi.org/10.1038/39282.   DOI   ScienceOn
80 Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon, 33, 873 (1995). http://dx.doi.org/10.1016/0008-6223(95)00016-7.   DOI   ScienceOn
81 Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett, 84, 5552 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.5552.   DOI   ScienceOn
82 Shibutani Y, Shiozaki M, Kugimiya T, Tomita Y. Irreversible deformation of carbon nanotubes under bending. J Jpn Inst Met, 63, 1262 (1999).   DOI
83 Li F, Cheng HM, Bai S, Su G, Dresselhaus MS. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett, 77, 3161 (2000). http://dx.doi.org/10.1063/1.1324984.   DOI   ScienceOn
84 Shen W, Jiang B, Han BS, Xie S. Investigation of the radial compression of carbon nanotubes with a scanning probe microscope. Phys Rev Lett, 84, 3634 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.3634.   DOI   ScienceOn
85 Wang ZL, Gao RP, Poncharal P, de Heer WA, Dai ZR, Pan ZW. Mechanical and electrostatic properties of carbon nanotubes and nanowires. Mater Sci Eng C, 16, 3 (2001). http://dx.doi.org/10.1016/S0928-4931(01)00293-4.   DOI   ScienceOn
86 Ru CQ. Effect of van der Waals forces on axial buckling of a double- walled carbon nanotube. J Appl Phys, 87, 7227 (2000). http://dx.doi.org/10.1063/1.372973.   DOI   ScienceOn
87 Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A, 334, 173 (2002). http://dx.doi.org/10.1016/S0921-5093(01)01807-X.   DOI   ScienceOn
88 Sinnott SB, Shenderova OA, White CT, Brenner DW. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon, 36, 1 (1998). http://dx.doi.org/10.1016/S0008-6223(97)00144-9.   DOI   ScienceOn
89 Yakobson BI. Mechanical relaxation and "intramolecular plasticity" in carbon nanotubes. Appl Phys Lett, 72, 918 (1998). http://dx.doi.org/10.1063/1.120873.   DOI   ScienceOn
90 Guanghua G, Tahir C, William AG, III. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology, 9, 184 (1998). http://dx.doi.org/10.1088/0957-4484/9/3/007.   DOI   ScienceOn
91 Hernandez E, Goze C, Bernier P, Rubio A. Elastic properties of C and $B_xC_yN_z$ composite nanotubes. Phys Rev Lett, 80, 4502 (1998). http://dx.doi.org/10.1103/PhysRevLett.80.4502.   DOI   ScienceOn
92 Ashcroft NW, Mermin ND. Solid State Physics, Harcourt Brace, Orlando, FL (1976).
93 Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 87, 215502 (2001). http://dx.doi.org/10.1103/PhysRevLett.87.215502.   DOI   ScienceOn
94 Yu C, Shi L, Yao Z, Li D, Majumdar A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett, 5, 1842 (2005). http://dx.doi.org/10.1021/nl051044e.   DOI   ScienceOn
95 Kasuya A, Saito Y, Sasaki Y, Fukushima M, Maedaa T, Horie C, Nishina Y. Size dependent characteristics of single wall carbon nanotubes. Mater Sci Eng A, 217-218, 46 (1996). http://dx.doi.org/10.1016/S0921-5093(96)10357-9.   DOI   ScienceOn
96 Maultzsch J, Reich S, Thomsen C, Dobardzic E, Milosevic I, Damnjanovic M. Phonon dispersion of carbon nanotubes. Solid State Commun, 121, 471 (2002). http://dx.doi.org/10.1016/S0038-1098(02)00025-X.   DOI   ScienceOn
97 Ishii H, Kobayashi N, Hirose K. Electron-phonon coupling effect on quantum transport in carbon nanotubes using time-dependent wave-packet approach. Physica E, 40, 249 (2007). http://dx.doi.org/10.1016/j.physe.2007.06.006.   DOI   ScienceOn
98 Maeda T, Horie C. Phonon modes in single-wall nanotubes with a small diameter. Physica B, 263-264, 479 (1999). http://dx.doi.org/10.1016/S0921-4526(98)01415-X.   DOI   ScienceOn
99 Popov VN. Theoretical evidence for $T^{1/2}$ specific heat behavior in carbon nanotube systems. Carbon, 42, 991 (2004). http://dx.doi.org/10.1016/j.carbon.2003.12.014.   DOI   ScienceOn
100 Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A. Organic functionalization of carbon nanotubes. J Am Chem Soc, 124, 760 (2002). http://dx.doi.org/10.1021/ja016954m.   DOI   ScienceOn
101 Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed, 41, 1853 (2002). http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N.   DOI   ScienceOn
102 Kim JH, Min BG. Functionalization of multi-walled carbon nanotube by treatment with dry ozone gas for the enhanced dispersion and adhesion in polymeric composites. Carbon Lett, 11, 298 (2010). http://dx.doi.org/10.5714/CL.2010.11.4.298.   과학기술학회마을   DOI   ScienceOn
103 Saeed K. Review on the properties, dispersion and toxicology of carbon nanotubes. J Chem Soc Pak, 32, 561 (2010).
104 Vaisman L, Wagner HD, Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci, 128-130, 37 (2006). http://dx.doi.org/10.1016/j.cis.2006.11.007.   DOI   ScienceOn
105 Wu HC, Chang X, Liu L, Zhao F, Zhao Y. Chemistry of carbon nanotubes in biomedical applications. J Mater Chem, 20, 1036 (2010). http://dx.doi.org/10.1039/B911099M.   DOI   ScienceOn
106 Hersam MC. Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol, 3, 387 (2008). http://dx.doi.org/10.1038/nnano.2008.135.   DOI   ScienceOn
107 Wang H. Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci, 14, 364 (2009). http://dx.doi.org/10.1016/j.cocis.2009.06.004.   DOI   ScienceOn
108 NANOSAFE 2008. Available from: http://www.nanosafe2008.org.
109 Helland A, Wick P, Koehler A, Schmid K, Som C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect, 115, 1125 (2007). http://dx.doi.org/10.1289/ehp.9652.   DOI   ScienceOn
110 Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science, 297, 787 (2002). http://dx.doi.org/10.1126/science.1060928.   DOI   ScienceOn
111 Cao A, Zhu H, Zhang X, Li X, Ruan D, Xu C, Wei B, Liang J, Wu D. Hydrogen storage of dense-aligned carbon nanotubes. Chem Phys Lett, 342, 510 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00619-4.   DOI   ScienceOn
112 Kar S, Bindal RC, Prabhakar S, Tewari PK, Dasgupta K, Sathiyamoorthy D. Potential of carbon nanotubes in water purification: an approach towards the development of an integrated membrane system. Int J Nucl Desalin, 3, 143 (2008). http://dx.doi.org/10.1504/IJND.2008.020221.   DOI   ScienceOn
113 Saeed K, Park SY. Preparation of multiwalled carbon nanotube/nylon-6 nanocomposites by in situ polymerization. J Appl Polym Sci, 106, 3729 (2007). http://dx.doi.org/10.1002/app.26942.   DOI   ScienceOn
114 Garcia-Gutierrez MC, Nogales A, Rueda DR, Domingo C, Garcia-Ramos JV, Broza G, Roslaniec Z, Schulte K, Davies RJ, Ezquerra TA. Templating of crystallization and shear-induced self-assembly of single-wall carbon nanotubes in a polymer-nanocomposite. Polymer, 47, 341 (2006). http://dx.doi.org/10.1016/j.polymer.2005.11.018.   DOI   ScienceOn
115 Siochi EJ, Working DC, Park C, Lillehei PT, Rouse JH, Topping CC, Bhattacharyya AR, Kumar S. Melt processing of SWCNT-polyimide nanocomposite fibers. Composites B, 35, 439 (2004). http://dx.doi.org/10.1016/j.compositesb.2003.09.007.   DOI   ScienceOn
116 Bhattacharyya AR, Potschke P, Abdel-Goad M, Fischer D. Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites. Chem Phys Lett, 392, 28 (2004). http://dx.doi.org/10.1016/j.cplett.2004.05.045.   DOI   ScienceOn
117 Prashantha K, Soulestin J, Lacrampe MF, Claes M, Dupin G, Krawczak P. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polym Lett, 2, 735 (2008). http://dx.doi.org/10.3144/expresspolymlett.2008.87.   DOI
118 Zhang XX, Meng QJ, Wang XC, Bai SH. Poly(adipic acid-hexamethylene diamine)-functionalized multi-walled carbon nanotube nanocomposites. J Mater Sci, 46, 923 (2011). http://dx.doi.org/10.1007/s10853-010-4836-2.   DOI
119 De Vita A, Charlier JC, Blase X, Car R. Electronic structure at carbon nanotube tips. Appl Phys A, 68, 283 (1999). http://dx.doi.org/10.1007/s003390050889.   DOI
120 Bonard JM, Stockli T, Maier F, de Heer WA, Chatelain A, Salvetat JP, Forro L. Field-emission-induced luminescence from carbon nanotubes. Phys Rev Lett, 81, 1441 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.1441.   DOI   ScienceOn
121 Rotman D. The nanotube computer. MIT Technol Rev, 105, 36 (2002). http://www.technologyreview.com/featuredstory/401378/the-nanotube-computer/.
122 Rinzler AG, Hafner JH, Nikolaev P, Nordlander P, Colbert DT, Smalley RE, Lou L, Kim SG, Tomanek D. Unraveling nanotubes: field emission from an atomic wire. Science, 269, 1550 (1995). http://dx.doi.org/10.1126/science.269.5230.1550.   DOI   ScienceOn
123 Saito Y, Hamaguchi K, Hata K, Uchida K, Tasaka Y, Ikazaki F, Yumura M, Kasuya A, Nishina Y. Conical beams from open nanotubes. Nature, 389, 554 (1997). http://dx.doi.org/10.1038/39221.   DOI   ScienceOn
124 Saito Y, Uemura S, Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn J Appl Phys, 37, L346 (1998). http://dx.doi.org/10.1143/JJAP.37.L346.   DOI   ScienceOn
125 Sugie H, Tanemura M, Filip V, Iwata K, Takahashi K, Okuyama F. Carbon nanotubes as electron source in an x-ray tube. Appl Phys Lett, 78, 2578 (2001). http://dx.doi.org/10.1063/1.1367278.   DOI   ScienceOn
126 Xia H, Wang Y, Lin J, Lu L. Hydrothermal synthesis of $MnO_2$/CNT nanocomposite with a CNT core/porous $MnO_2$ sheath hierarchy architecture for supercapacitors. Nanoscale Res Lett, 7, 33 (2012). http://dx.doi.org/10.1186/1556-276X-7-33.   DOI   ScienceOn
127 Evanoff K, Benson J, Schauer M, Kovalenko I, Lashmore D, Ready WJ, Yushin G. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. ACS Nano, 6, 9837 (2012). http://dx.doi.org/10.1021/nn303393p.   DOI   ScienceOn
128 Lee NS, Chung DS, Han IT, Kang JH, Choi YS, Kim HY, Park SH, Jin YW, Yi WK, Yun MJ, Jung JE, Lee CJ, You JH, Jo SH, Lee CG, Kim JM. Application of carbon nanotubes to field emission displays. Diamond Relat Mater, 10, 265 (2001). http://dx.doi.org/10.1016/S0925-9635(00)00478-7.   DOI   ScienceOn
129 Meunier V, Kephart J, Roland C, Bernholc J. Ab initio investigations of lithium diffusion in carbon nanotube systems. Phys Rev Lett, 88, 075506 (2002). http://dx.doi.org/10.1103/PhysRevLett.88.075506.   DOI   ScienceOn
130 Frackowiak E, Beguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon, 40, 1775 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00045-3.   DOI   ScienceOn
131 Niu C, Sichel EK, Hoch R, Moy D, Tennent H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett, 70, 1480 (1997). http://dx.doi.org/10.1063/1.118568.   DOI   ScienceOn
132 Ma RZ, Liang J, Wei BQ, Zhang B, Xu CL, Wu DH. Processing and performance of electric double-layer capacitors with block-type carbon nanotube electrodes. Bull Chem Soc Jpn, 72, 2563 (1999).   DOI   ScienceOn
133 Jurewicz K, Delpeux S, Bertagna V, Beguin F, Frackowiak E. Supercapacitors from nanotubes/polypyrrole composites. Chem Phys Lett, 347, 36 (2001). http://dx.doi.org/10.1016/S0009-2614(01)01037-5.   DOI   ScienceOn
134 Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M. Carbon nanotube actuators. Science, 284, 1340 (1999). http://dx.doi.org/10.1126/science.284.5418.1340.   DOI   ScienceOn
135 Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM. Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature, 394, 52 (1998). http://dx.doi.org/10.1038/27873.   DOI   ScienceOn
136 Collins PG, Bradley K, Ishigami M, Zettl A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 287, 1801 (2000). http://dx.doi.org/10.1126/science.287.5459.1801.   DOI   ScienceOn
137 Varghese OK, Kichambre PD, Gong D, Ong KG, Dickey EC, Grimes CA. Gas sensing characteristics of multi-wall carbon nanotubes. Sens Actuators B, 81, 32 (2001). http://dx.doi.org/10.1016/S0925-4005(01)00923-6.   DOI   ScienceOn
138 Wood JR, Zhao Q, Frogley MD, Meurs ER, Prins AD, Peijs T, Dunstan DJ, Wagner HD. Carbon nanotubes: from molecular to macroscopic sensors. Phys Rev B, 62, 7571 (2000). http://dx.doi.org/10.1103/PhysRevB.62.7571.   DOI   ScienceOn
139 Chopra S, Pham A, Gaillard J, Parker A, Rao AM. Carbon-nanotube-based resonant-circuit sensor for ammonia. Appl Phys Lett, 80, 4632 (2002). http://dx.doi.org/10.1063/1.1486481.   DOI   ScienceOn
140 Wood JR, Wagner HD. Single-wall carbon nanotubes as molecular pressure sensors. Appl Phys Lett, 76, 2883 (2000). http://dx.doi.org/10.1063/1.126505.   DOI   ScienceOn
141 Banhart F, Grobert N, Terrones M, Charlier JC, Ajayan PM. Metal atoms in carbon nanotubes and related nanoparticles. Int J Mod Phys B, 15, 4037 (2001). http://dx.doi.org/10.1142/S0217979201007944.   DOI   ScienceOn
142 Park SJ, Lee SY. Hydrogen storage behaviors of carbon nanotubes/ metal-organic frameworks-5 hybrid composites. Carbon Lett, 10, 19 (2009). http://dx.doi.org/10.5714/CL.2009.10.1.019.   과학기술학회마을   DOI   ScienceOn
143 Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286, 1127 (1999). http://dx.doi.org/10.1126/science.286.5442.1127.   DOI   ScienceOn
144 Gadd GE, Blackford M, Moricca S, Webb N, Evans PJ, Smith AM, Jacobsen G, Leung S, Day A, Hua Q. The world's smallest gas cylinders? Science, 277, 933 (1997). http://dx.doi.org/10.1126/science.277.5328.933.   DOI   ScienceOn
145 Terrones M, Kamalakaran R, Seeger T, Ruhle M. Novel nanoscale gas containers: encapsulation of $N_2$ in $CN_x$ nanotubes. Chem Commun, (23), 2335 (2000). http://dx.doi.org/10.1039/B008253H.   DOI
146 Trasobares S, Stephan O, Colliex C, Hug G, Hsu WK, Kroto HW, Walton DRM. Electron beam puncturing of carbon nanotube containers for release of stored $N_2$ gas. Eur Phys J B, 22, 117 (2001). http://dx.doi.org/10.1007/BF01322353.   DOI
147 Gordon PA, Saeger RB. Molecular modeling of adsorptive energy storage: hydrogen storage in single-walled carbon nanotubes. Ind Eng Chem Res, 38, 4647 (1999). http://dx.doi.org/10.1021/ie990503h.   DOI   ScienceOn
148 Chambers A, Park C, Baker RTK, Rodriguez NM. Hydrogen storage in graphite nanofibers. J Phys Chem B, 102, 4253 (1998). http://dx.doi.org/10.1021/jp980114l.   DOI   ScienceOn
149 Chen P, Wu X, Lin J, Tan KL. High $H_2$ uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science, 285, 91 (1999). http://dx.doi.org/10.1126/science.285.5424.91.   DOI   ScienceOn
150 Hirscher M, Becher M, Haluska M, Quintel A, Skakalova V, Choi YM, Dettlaff-Weglikowska U, Roth S, Stepanek I, Bernier P, Leonhardt A, Fink J. Hydrogen storage in carbon nanostructures. J Alloys Compd, 330-332, 654 (2002). http://dx.doi.org/10.1016/S0925-8388(01)01643-7.   DOI   ScienceOn
151 Meregalli V, Parrinello M. Review of theoretical calculations of hydrogen storage in carbon-based materials. Appl Phys A, 72, 143 (2001). http://dx.doi.org/10.1007/s003390100789.   DOI
152 Lee SM, An KH, Lee YH, Seifert G, Frauenheim T. A hydrogen storage mechanism in single-walled carbon nanotubes. J Am Chem Soc, 123, 5059 (2001). http://dx.doi.org/10.1021/ja003751+.   DOI   ScienceOn
153 Darkrim FL, Malbrunot P, Tartaglia GP. Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy, 27, 193 (2002). http://dx.doi.org/10.1016/S0360-3199(01)00103-3.   DOI   ScienceOn
154 Tanaka H, El-Merraoui M, Steele WA, Kaneko K. Methane adsorption on single-walled carbon nanotube: a density functional theory model. Chem Phys Lett, 352, 334 (2002). http://dx.doi.org/10.1016/S0009-2614(01)01486-5.   DOI   ScienceOn
155 Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE. Nanotubes as nanoprobes in scanning probe microscopy. Nature, 384, 147 (1996). http://dx.doi.org/10.1038/384147a0.   DOI   ScienceOn
156 Venema LC, Wildoer JWG, Tuinstra HLJT, Dekker C, Rinzler AG, Smalley RE. Length control of individual carbon nanotubes by nanostructuring with a scanning tunneling microscope. Appl Phys Lett, 71, 2629 (1997). http://dx.doi.org/10.1063/1.120161.   DOI   ScienceOn
157 Wagner FE, Haslbeck S, Stievano L, Calogero S, Pankhurst QA, Martinek KP. Before striking gold in gold-ruby glass. Nature, 407, 691 (2000). http://dx.doi.org/10.1038/35037661.   DOI   ScienceOn
158 Franks A. Nanotechnology. J Phys E, 20, 1442 (1987). http://dx.doi.org/10.1088/0022-3735/20/12/001.   DOI   ScienceOn
159 Taniguchi N. On the basic concept of 'nano-technology'. Proceedings of the International Conference on Production Engineering, Tokyo, Japan, Part II (1974).
160 Kim P, Lieber CM. Nanotube nanotweezers. Science, 286, 2148 (1999). http://dx.doi.org/10.1126/science.286.5447.2148.   DOI   ScienceOn
161 Postma HWC, de Jonge M, Yao Z, Dekker C. Electrical transport through carbon nanotube junctions created by mechanical manipulation. Phys Rev B, 62, R10653 (2000). http://dx.doi.org/10.1103/PhysRevB.62.R10653.   DOI   ScienceOn
162 Park JY, Yaish Y, Brink M, Rosenblatt S, McEuen PL. Electrical cutting and nicking of carbon nanotubes using an atomic force microscope. Appl Phys Lett, 80, 4446 (2002). http://dx.doi.org/10.1063/1.1485126.   DOI   ScienceOn
163 Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science, 294, 1317 (2001). http://dx.doi.org/10.1126/science.1065824.   DOI   ScienceOn
164 Huang Y, Duan X, Cui Y, Lauhon LJ, Kim KH, Lieber CM. Logic gates and computation from assembled nanowire building blocks. Science, 294, 1313 (2001). http://dx.doi.org/10.1126/science.1066192.   DOI   ScienceOn
165 Derycke V, Martel R, Appenzeller J, Avouris P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett, 1, 453 (2001). http://dx.doi.org/10.1021/nl015606f.   DOI   ScienceOn
166 Javey A, Wang Q, Ural A, Li YM, Dai HJ. Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators. Nano Lett, 2, 929 (2002).   DOI   ScienceOn
167 Collins PG, Arnold MS, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 292, 706 (2001). http://dx.doi.org/10.1126/science.1058782.   DOI   ScienceOn