1 |
Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. : buckminsterfullerene. Nature, 318, 162 (1985). http://dx.doi.org/10.1038/318162a0.
DOI
|
2 |
Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.
DOI
|
3 |
Radushkevich LV, Lukyanovich VM. O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte (About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate). Zurn Fisic Chim, 26, 88 (1952).
|
4 |
Lau AKT, Hui D. The revolutionary creation of new advanced materials--carbon nanotube composites. Composites B, 33, 263 (2002). http://dx.doi.org/10.1016/S1359-8368(02)00012-4.
DOI
ScienceOn
|
5 |
Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603 (1993). http://dx.doi.org/10.1038/363603a0.
DOI
ScienceOn
|
6 |
Geim AK, Novoselov KS. The rise of graphene. Nature Mater, 6, 183 (2007). http:dx.doi.org/10.1038/nmat1849.
DOI
ScienceOn
|
7 |
Sheshmania S, Ashorib A, Fashapoyeha MA. Wood plastic composite using graphene nanoplatelets, Int J Biol Macromol, 58, 6 (2013). http://dx.doi.org/10.1016/j.ijbiomac.2013.03.047.
DOI
ScienceOn
|
8 |
Saether E, Frankland SJV, Pipes RB. Transverse mechanical properties of single walled carbon nanotube crystals. Part I: determination of elastic moduli. Compos Sci Technol, 63, 1543 (2003). http://dx.doi.org/10.1016/S0266-3538(03)00056-3.
DOI
ScienceOn
|
9 |
Pichler T. Molecular nanostructures: carbon ahead. Nature Mater, 6, 332 (2007). http://dx.doi.org/10.1038/nmat1898.
DOI
ScienceOn
|
10 |
Ajayan PM. Bulk metal and ceramics nanocomposites. In: Ajayan PM, Schadler LS, Braun PV, eds. Nanocomposite Science and Technology, Wiley-VCH Verlag GmbH & Co., 1 (2004). http://dx.doi.org/10.1002/3527602127.ch1.
DOI
|
11 |
Blase X, Charlier JC, De Vita A, Car R, Redlich P, Terrones M, Hsu WK, Terrones H, Carroll DL, Ajayan PM. Boron-mediated growth of long helicity-selected carbon nanotubes. Phys Rev Lett, 83, 5078 (1999). http://dx.doi.org/10.1103/PhysRevLett.83.5078.
DOI
ScienceOn
|
12 |
Akiladevi D, Basak S. Carbon nanotubes (CNTs) production, characterization and its applications. Int J Adv Pharm Sci, 1, 187 (2010). http://dx.doi.org/10.5138/ijaps.2010.0976.1055.01024.
|
13 |
Satishkumar BC, Govindaraj A, Nath M, Rao CNR. Synthesis of metal oxide nanorods using carbon nanotubes as templates. J Mater Chem, 10, 2115 (2000). http://dx.doi.org/10.1039/B002868L.
DOI
|
14 |
Choi YM, Lee DS, Czerw R, Chiu PW, Grobert N, Terrones M, Reyes-Reyes M, Terrones H, Charlier JC, Ajayan PM, Roth S, Carroll DL, Park YW. Nonlinear behavior in the thermopower of doped carbon nanotubes due to strong, localized states. Nano Lett, 3, 839 (2003). http://dx.doi.org/10.1021/nl034161n.
DOI
ScienceOn
|
15 |
Simeonova PP. Update on carbon nanotube toxicity. Nanomedicine, 4, 373 (2009). http://dx.doi.org/10.2217/nnm.09.25.
DOI
ScienceOn
|
16 |
Shvedova AA, Kagan VE, Fadeel B. Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol, 50, 63 (2010). http://dx.doi.org/10.1146/annurev.pharmtox.010909.105819.
DOI
ScienceOn
|
17 |
Oberdorster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med, 267, 89 (2010). http://dx.doi.org/10.1111/j.1365-2796.2009.02187.x.
DOI
ScienceOn
|
18 |
Warheit DB, Sayes CM, Reed KL, Swain KA. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther, 120, 35 (2008). http://dx.doi.org/10.1016/j.pharmthera.2008.07.001.
DOI
ScienceOn
|
19 |
Dresselhaus MS, Lin YM, Rabin O, Jorio A, Souza AG, Pimenta MA, Saito R, Samsonidze G, Dresselhaus G. Nanowires and nanotubes. Mater Sci Engg: C, 23, 129 (2003).
DOI
ScienceOn
|
20 |
Prasher RS, Hu XJ, Chalopin Y, Mingo N, Lofgreen K, Volz S, Cleri F, Keblinski P. Turning carbon nanotubes from exceptional heat conductors into insulators. Phys Rev Lett, 102, 105901 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.105901.
DOI
ScienceOn
|
21 |
Ahmad A, Kholoud MM, Abou E, Reda AA, Abdulrahman AW. Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arabian J Chem, 5, 1 (2012). http://dx.doi.org/10.1016/j.arabjc.2010.08.022.
DOI
ScienceOn
|
22 |
Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature, 358, 220 (1992). http://dx.doi.org/10.1038/358220a0.
DOI
|
23 |
Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605 (1993). http://dx.doi.org/10.1038/363605a0.
DOI
ScienceOn
|
24 |
Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388, 756 (1997).
DOI
ScienceOn
|
25 |
Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483.
DOI
ScienceOn
|
26 |
Mamalis AG, Vogtlander LOG, Markopoulos A. Nanotechnology and nanostructured materials: trends in carbon nanotubes. Precis Eng, 28, 16 (2004). http://dx.doi.org/10.1016/j.precisioneng.2002.11.002.
DOI
ScienceOn
|
27 |
Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G. Large-scale synthesis of aligned carbon nanotubes. Science, 274, 1701 (1996). http://dx.doi.org/10.1126/science.274.5293.1701.
DOI
ScienceOn
|
28 |
Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med, 164, 1665 (2001). http://dx.doi.org/10.1164/ajrccm.164.9.2101036.
DOI
ScienceOn
|
29 |
Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, Shvedova A, Luster MI, Simeonova PP. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect, 115, 377 (2007). http://dx.doi.org/10.1289/ehp.9688.
DOI
ScienceOn
|
30 |
Nemmar A, Hoylaerts MF, Hoet PH, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery B. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med, 166, 998 (2002). http://dx.doi.org/10.1164/rccm.200110-026OC.
DOI
ScienceOn
|
31 |
Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol, 3, 423 (2008). http://dx.doi.org/10.1038/nnano.2008.111.
DOI
ScienceOn
|
32 |
Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol, 36, 189 (2006). http://dx.doi.org/10.1080/10408440600570233.
DOI
ScienceOn
|
33 |
Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci, 101, 4 (2008). http://dx.doi.org/10.1093/toxsci/kfm169.
DOI
ScienceOn
|
34 |
Sydlik U, Gallitz I, Albrecht C, Abel J, Krutmann J, Unfried K. The compatible solute ectoine protects against nanoparticleinduced neutrophilic lung inflammation. Am J Respir Crit Care Med, 180, 29 (2009). http://dx.doi.org/10.1164/rccm.200812-1911OC.
DOI
ScienceOn
|
35 |
Rao CNR, Govindaraj A, Gundiah G, Vivekchand SRC. Nanotubes and nanowires. Chem Eng Sci, 59, 4665 (2004). http://dx.doi.org/10.1016/j.ces.2004.07.067.
DOI
ScienceOn
|
36 |
Xie S, Li W, Pan Z, Chang B, Sun L. Carbon nanotube arrays. Mater Sci Eng A, 286, 11 (2000). http://dx.doi.org/10.1016/S0921-5093(00)00657-2.
DOI
ScienceOn
|
37 |
Lee CJ, Lyu SC, Kim HW, Park CY, Yang CW. Large-scale production of aligned carbon nanotubes by the vapor phase growth method. Chem Phys Lett, 359, 109 (2002). http://dx.doi.org/10.1016/S0009-2614(02)00648-6.
DOI
ScienceOn
|
38 |
Hahm MG, Hashim DP, Vajtai R, Ajayan PM. A review: controlled synthesis of vertically aligned carbon nanotubes. Carbon Lett, 12, 185 (2011). http://dx.doi.org/10.5714/CL.2011.12.4.185.
과학기술학회마을
DOI
ScienceOn
|
39 |
Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature, 382, 54 (1996). http://dx.doi.org/10.1038/382054a0.
DOI
|
40 |
Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381, 678 (1996). http://dx.doi.org/10.1038/381678a0.
DOI
ScienceOn
|
41 |
Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 46, 439 (2005). http://dx.doi.org/10.1016/j.polymer.2004.11.030.
DOI
ScienceOn
|
42 |
Jin FL, Park SJ. Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett, 14, 1 (2013). http://dx.doi.org/10.5714/CL.2012.14.1.001.
DOI
ScienceOn
|
43 |
Wepasnick KA, Smith BA, Bitter JL, Howard Fairbrother D. Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem, 396, 1003 (2010). http://dx.doi.org/10.1007/s00216-009-3332-5.
DOI
|
44 |
Tong H, McGee JK, Saxena RK, Kodavanti UP, Devlin RB, Gilmour MI. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicol Appl Pharmacol, 239, 224 (2009). http://dx.doi.org/10.1016/j.taap.2009.05.019.
DOI
ScienceOn
|
45 |
Fenoglio I, Greco G, Tomatis M, Muller J, Raymundo-Pinero E, Beguin F, Fonseca A, Nagy JB, Lison D, Fubini B. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem Res Toxicol, 21, 1690 (2008). http://dx.doi.org/10.1021/tx800100s.
DOI
ScienceOn
|
46 |
Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology, 4, 207 (2010). http://dx.doi.org/10.3109/17435390903569639.
DOI
ScienceOn
|
47 |
Kayat J, Gajbhiye V, Tekade RK, Jain NK. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine, 7, 40 (2011). http://dx.doi.org/10.1016/j.nano.2010.06.008.
DOI
ScienceOn
|
48 |
Vittorio O, Raffa V, Cuschieri A. Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomedicine, 5, 424 (2009). http://dx.doi.org/10.1016/j.nano.2009.02.006.
DOI
ScienceOn
|
49 |
Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science, 272, 523 (1996). http://dx.doi.org/10.1126/science.272.5261.523.
DOI
ScienceOn
|
50 |
Chandra B, Bhattacharjee J, Purewal M, Son YW, Wu Y, Huang M, Yan H, Heinz TF, Kim P, Neaton JB, Hone J. Molecular-scale quantum dots from carbon nanotube heterojunctions. Nano Lett, 9, 1544 (2009). http://dx.doi.org/10.1021/nl803639h.
DOI
ScienceOn
|
51 |
Choo H, Jung Y, Jeong Y, Kim HC, Ku BC. Fabrication and applications of carbon nanotube fibers. Carbon Lett, 13, 191 (2012). http://dx.doi.org/10.5714/CL.2012.13.4.191.
과학기술학회마을
DOI
ScienceOn
|
52 |
Kim KS, Park SJ. Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites. Carbon Lett, 13, 51 (2012). http://dx.doi.org/10.5714/CL.2012.13.1.051.
과학기술학회마을
DOI
ScienceOn
|
53 |
Mintmire JW, Dunlap BI, White CT. Are fullerene tubules metallic? Phys Rev Lett, 68, 631 (1992). http://dx.doi.org/10.1103/PhysRevLett.68.631.
DOI
ScienceOn
|
54 |
Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic structure of chiral graphene tubules. Appl Phys Lett, 60, 2204 (1992). http://dx.doi.org/10.1063/1.107080.
DOI
|
55 |
Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49 (1998). http://dx.doi.org/10.1038/29954.
DOI
|
56 |
Schonenberger C, Bachtold A, Strunk C, Salvetat JP, Forro L. Interference and Interaction in multi-wall carbon nanotubes. Appl Phys A, 69, 283 (1999). http://dx.doi.org/10.1007/s003390051003.
DOI
ScienceOn
|
57 |
Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett, 77, 666 (2000). http://dx.doi.org/10.1063/1.127079.
DOI
|
58 |
Bandaru PR, Daraio C, Jin S, Rao AM. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat Mater, 4, 663 (2005). http://dx.doi.org/10.1038/nmat1450.
DOI
ScienceOn
|
59 |
Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 386, 474 (1997). http://dx.doi.org/10.1038/386474a0.
DOI
ScienceOn
|
60 |
Delaney P, Di Ventra M, Pantelides ST. Quantized conductance of multiwalled carbon nanotubes. Appl Phys Lett, 75, 3787 (1999). http://dx.doi.org/10.1063/1.125456.
DOI
ScienceOn
|
61 |
Cheng Y, Zhou O. Electron field emission from carbon nanotubes. Comptes Rendus Physique, 4, 1021 (2003). http://dx.doi.org/10.1016/S1631-0705(03)00103-8.
DOI
ScienceOn
|
62 |
Modi A, Koratkar N, Lass E, Wei B, Ajayan PM. Miniaturized gas ionization sensors using carbon nanotubes. Nature, 424, 171 (2003). http://dx.doi.org/10.1038/nature01777.
DOI
ScienceOn
|
63 |
Yue GZ, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu JP, Zhou O. Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based fieldemission cathode. Appl Phys Lett, 81, 355 (2002). http://dx.doi.org/10.1063/1.1492305.
DOI
ScienceOn
|
64 |
Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637 (2000). http://dx.doi.org/10.1126/science.287.5453.637.
DOI
ScienceOn
|
65 |
Ruoff RS, Tersoff J, Lorents DC, Subramoney S, Chan B. Radial deformation of carbon nanotubes by van der Waals forces. Nature, 364, 514 (1993). http://dx.doi.org/10.1038/364514a0.
DOI
ScienceOn
|
66 |
Palaci I, Fedrigo S, Brune H, Klinke C, Chen M, Riedo E. Radial elasticity of multiwalled carbon nanotubes. Phys Rev Lett, 94, 175502 (2005). http://dx.doi.org/10.1103/PhysRevLett.94.175502.
DOI
ScienceOn
|
67 |
Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin--nanotube composite. Science, 265, 1212 (1994). http://dx.doi.org/10.1126/science.265.5176.1212.
DOI
ScienceOn
|
68 |
Yu MF, Kowalewski T, Ruoff RS. Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force. Phys Rev Lett, 85, 1456 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.1456.
DOI
ScienceOn
|
69 |
Yang YH, Li WZ. Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy. Appl Phys Lett, 98, 041901 (2011). http://dx.doi.org/10.1063/1.3546170
DOI
ScienceOn
|
70 |
Minary-Jolandan M, Yu MF. Reversible radial deformation up to the complete flattening of carbon nanotubes in nanoindentation. J Appl Phys, 103, 073516 (2008). http://dx.doi.org/10.1063/1.2903438.
DOI
ScienceOn
|
71 |
Iijima S, Brabec C, Maiti A, Bernholc J. Structural flexibility of carbon nanotubes. J Chem Phys, 104, 2089 (1996). http://dx.doi.org/10.1063/1.470966.
DOI
ScienceOn
|
72 |
Chopra NG, Benedict LX, Crespi VH, Cohen ML, Louie SG, Zettl A. Fully collapsed carbon nanotubes. Nature, 377, 135 (1995). http://dx.doi.org/10.1038/377135a0.
DOI
|
73 |
Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon, 33, 925 (1995). http://dx.doi.org/10.1016/0008-6223(95)00021-5.
DOI
ScienceOn
|
74 |
Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA (1996).
|
75 |
Overney G, Zhong W, Tomanek D. Structural rigidity and low frequency vibrational modes of long carbon tubules. Z Phys D, 27, 93 (1993). http://dx.doi.org/10.1007/BF01436769.
DOI
ScienceOn
|
76 |
Robertson DH, Brenner DW, Mintmire JW. Energetics of nanoscale graphitic tubules. Phys Rev B, 45, 12592 (1992). http://dx.doi.org/10.1103/PhysRevB.45.12592.
DOI
ScienceOn
|
77 |
Zhu YQ, Sekine T, Kobayashi T, Takazawa E, Terrones M, Terrones H. Collapsing carbon nanotubes and diamond formation under shock waves. Chem Phys Lett, 287, 689 (1998). http://dx.doi.org/10.1016/S0009-2614(98)00226-7.
DOI
ScienceOn
|
78 |
Tersoff J. Energies of fullerenes. Phys Rev B, 46, 15546 (1992). http://dx.doi.org/10.1103/PhysRevB.46.15546.
DOI
ScienceOn
|
79 |
Falvo MR, Clary GJ, Taylor RM 2nd, Chi V, Brooks FP Jr, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 389, 582 (1997). http://dx.doi.org/10.1038/39282.
DOI
ScienceOn
|
80 |
Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon, 33, 873 (1995). http://dx.doi.org/10.1016/0008-6223(95)00016-7.
DOI
ScienceOn
|
81 |
Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett, 84, 5552 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.5552.
DOI
ScienceOn
|
82 |
Shibutani Y, Shiozaki M, Kugimiya T, Tomita Y. Irreversible deformation of carbon nanotubes under bending. J Jpn Inst Met, 63, 1262 (1999).
DOI
|
83 |
Li F, Cheng HM, Bai S, Su G, Dresselhaus MS. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett, 77, 3161 (2000). http://dx.doi.org/10.1063/1.1324984.
DOI
ScienceOn
|
84 |
Shen W, Jiang B, Han BS, Xie S. Investigation of the radial compression of carbon nanotubes with a scanning probe microscope. Phys Rev Lett, 84, 3634 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.3634.
DOI
ScienceOn
|
85 |
Wang ZL, Gao RP, Poncharal P, de Heer WA, Dai ZR, Pan ZW. Mechanical and electrostatic properties of carbon nanotubes and nanowires. Mater Sci Eng C, 16, 3 (2001). http://dx.doi.org/10.1016/S0928-4931(01)00293-4.
DOI
ScienceOn
|
86 |
Ru CQ. Effect of van der Waals forces on axial buckling of a double- walled carbon nanotube. J Appl Phys, 87, 7227 (2000). http://dx.doi.org/10.1063/1.372973.
DOI
ScienceOn
|
87 |
Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A, 334, 173 (2002). http://dx.doi.org/10.1016/S0921-5093(01)01807-X.
DOI
ScienceOn
|
88 |
Sinnott SB, Shenderova OA, White CT, Brenner DW. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon, 36, 1 (1998). http://dx.doi.org/10.1016/S0008-6223(97)00144-9.
DOI
ScienceOn
|
89 |
Yakobson BI. Mechanical relaxation and "intramolecular plasticity" in carbon nanotubes. Appl Phys Lett, 72, 918 (1998). http://dx.doi.org/10.1063/1.120873.
DOI
ScienceOn
|
90 |
Guanghua G, Tahir C, William AG, III. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology, 9, 184 (1998). http://dx.doi.org/10.1088/0957-4484/9/3/007.
DOI
ScienceOn
|
91 |
Hernandez E, Goze C, Bernier P, Rubio A. Elastic properties of C and composite nanotubes. Phys Rev Lett, 80, 4502 (1998). http://dx.doi.org/10.1103/PhysRevLett.80.4502.
DOI
ScienceOn
|
92 |
Ashcroft NW, Mermin ND. Solid State Physics, Harcourt Brace, Orlando, FL (1976).
|
93 |
Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 87, 215502 (2001). http://dx.doi.org/10.1103/PhysRevLett.87.215502.
DOI
ScienceOn
|
94 |
Yu C, Shi L, Yao Z, Li D, Majumdar A. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett, 5, 1842 (2005). http://dx.doi.org/10.1021/nl051044e.
DOI
ScienceOn
|
95 |
Kasuya A, Saito Y, Sasaki Y, Fukushima M, Maedaa T, Horie C, Nishina Y. Size dependent characteristics of single wall carbon nanotubes. Mater Sci Eng A, 217-218, 46 (1996). http://dx.doi.org/10.1016/S0921-5093(96)10357-9.
DOI
ScienceOn
|
96 |
Maultzsch J, Reich S, Thomsen C, Dobardzic E, Milosevic I, Damnjanovic M. Phonon dispersion of carbon nanotubes. Solid State Commun, 121, 471 (2002). http://dx.doi.org/10.1016/S0038-1098(02)00025-X.
DOI
ScienceOn
|
97 |
Ishii H, Kobayashi N, Hirose K. Electron-phonon coupling effect on quantum transport in carbon nanotubes using time-dependent wave-packet approach. Physica E, 40, 249 (2007). http://dx.doi.org/10.1016/j.physe.2007.06.006.
DOI
ScienceOn
|
98 |
Maeda T, Horie C. Phonon modes in single-wall nanotubes with a small diameter. Physica B, 263-264, 479 (1999). http://dx.doi.org/10.1016/S0921-4526(98)01415-X.
DOI
ScienceOn
|
99 |
Popov VN. Theoretical evidence for specific heat behavior in carbon nanotube systems. Carbon, 42, 991 (2004). http://dx.doi.org/10.1016/j.carbon.2003.12.014.
DOI
ScienceOn
|
100 |
Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A. Organic functionalization of carbon nanotubes. J Am Chem Soc, 124, 760 (2002). http://dx.doi.org/10.1021/ja016954m.
DOI
ScienceOn
|
101 |
Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed, 41, 1853 (2002). http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N.
DOI
ScienceOn
|
102 |
Kim JH, Min BG. Functionalization of multi-walled carbon nanotube by treatment with dry ozone gas for the enhanced dispersion and adhesion in polymeric composites. Carbon Lett, 11, 298 (2010). http://dx.doi.org/10.5714/CL.2010.11.4.298.
과학기술학회마을
DOI
ScienceOn
|
103 |
Saeed K. Review on the properties, dispersion and toxicology of carbon nanotubes. J Chem Soc Pak, 32, 561 (2010).
|
104 |
Vaisman L, Wagner HD, Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci, 128-130, 37 (2006). http://dx.doi.org/10.1016/j.cis.2006.11.007.
DOI
ScienceOn
|
105 |
Wu HC, Chang X, Liu L, Zhao F, Zhao Y. Chemistry of carbon nanotubes in biomedical applications. J Mater Chem, 20, 1036 (2010). http://dx.doi.org/10.1039/B911099M.
DOI
ScienceOn
|
106 |
Hersam MC. Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol, 3, 387 (2008). http://dx.doi.org/10.1038/nnano.2008.135.
DOI
ScienceOn
|
107 |
Wang H. Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci, 14, 364 (2009). http://dx.doi.org/10.1016/j.cocis.2009.06.004.
DOI
ScienceOn
|
108 |
NANOSAFE 2008. Available from: http://www.nanosafe2008.org.
|
109 |
Helland A, Wick P, Koehler A, Schmid K, Som C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect, 115, 1125 (2007). http://dx.doi.org/10.1289/ehp.9652.
DOI
ScienceOn
|
110 |
Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science, 297, 787 (2002). http://dx.doi.org/10.1126/science.1060928.
DOI
ScienceOn
|
111 |
Cao A, Zhu H, Zhang X, Li X, Ruan D, Xu C, Wei B, Liang J, Wu D. Hydrogen storage of dense-aligned carbon nanotubes. Chem Phys Lett, 342, 510 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00619-4.
DOI
ScienceOn
|
112 |
Kar S, Bindal RC, Prabhakar S, Tewari PK, Dasgupta K, Sathiyamoorthy D. Potential of carbon nanotubes in water purification: an approach towards the development of an integrated membrane system. Int J Nucl Desalin, 3, 143 (2008). http://dx.doi.org/10.1504/IJND.2008.020221.
DOI
ScienceOn
|
113 |
Saeed K, Park SY. Preparation of multiwalled carbon nanotube/nylon-6 nanocomposites by in situ polymerization. J Appl Polym Sci, 106, 3729 (2007). http://dx.doi.org/10.1002/app.26942.
DOI
ScienceOn
|
114 |
Garcia-Gutierrez MC, Nogales A, Rueda DR, Domingo C, Garcia-Ramos JV, Broza G, Roslaniec Z, Schulte K, Davies RJ, Ezquerra TA. Templating of crystallization and shear-induced self-assembly of single-wall carbon nanotubes in a polymer-nanocomposite. Polymer, 47, 341 (2006). http://dx.doi.org/10.1016/j.polymer.2005.11.018.
DOI
ScienceOn
|
115 |
Siochi EJ, Working DC, Park C, Lillehei PT, Rouse JH, Topping CC, Bhattacharyya AR, Kumar S. Melt processing of SWCNT-polyimide nanocomposite fibers. Composites B, 35, 439 (2004). http://dx.doi.org/10.1016/j.compositesb.2003.09.007.
DOI
ScienceOn
|
116 |
Bhattacharyya AR, Potschke P, Abdel-Goad M, Fischer D. Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites. Chem Phys Lett, 392, 28 (2004). http://dx.doi.org/10.1016/j.cplett.2004.05.045.
DOI
ScienceOn
|
117 |
Prashantha K, Soulestin J, Lacrampe MF, Claes M, Dupin G, Krawczak P. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polym Lett, 2, 735 (2008). http://dx.doi.org/10.3144/expresspolymlett.2008.87.
DOI
|
118 |
Zhang XX, Meng QJ, Wang XC, Bai SH. Poly(adipic acid-hexamethylene diamine)-functionalized multi-walled carbon nanotube nanocomposites. J Mater Sci, 46, 923 (2011). http://dx.doi.org/10.1007/s10853-010-4836-2.
DOI
|
119 |
De Vita A, Charlier JC, Blase X, Car R. Electronic structure at carbon nanotube tips. Appl Phys A, 68, 283 (1999). http://dx.doi.org/10.1007/s003390050889.
DOI
|
120 |
Bonard JM, Stockli T, Maier F, de Heer WA, Chatelain A, Salvetat JP, Forro L. Field-emission-induced luminescence from carbon nanotubes. Phys Rev Lett, 81, 1441 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.1441.
DOI
ScienceOn
|
121 |
Rotman D. The nanotube computer. MIT Technol Rev, 105, 36 (2002). http://www.technologyreview.com/featuredstory/401378/the-nanotube-computer/.
|
122 |
Rinzler AG, Hafner JH, Nikolaev P, Nordlander P, Colbert DT, Smalley RE, Lou L, Kim SG, Tomanek D. Unraveling nanotubes: field emission from an atomic wire. Science, 269, 1550 (1995). http://dx.doi.org/10.1126/science.269.5230.1550.
DOI
ScienceOn
|
123 |
Saito Y, Hamaguchi K, Hata K, Uchida K, Tasaka Y, Ikazaki F, Yumura M, Kasuya A, Nishina Y. Conical beams from open nanotubes. Nature, 389, 554 (1997). http://dx.doi.org/10.1038/39221.
DOI
ScienceOn
|
124 |
Saito Y, Uemura S, Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn J Appl Phys, 37, L346 (1998). http://dx.doi.org/10.1143/JJAP.37.L346.
DOI
ScienceOn
|
125 |
Sugie H, Tanemura M, Filip V, Iwata K, Takahashi K, Okuyama F. Carbon nanotubes as electron source in an x-ray tube. Appl Phys Lett, 78, 2578 (2001). http://dx.doi.org/10.1063/1.1367278.
DOI
ScienceOn
|
126 |
Xia H, Wang Y, Lin J, Lu L. Hydrothermal synthesis of /CNT nanocomposite with a CNT core/porous sheath hierarchy architecture for supercapacitors. Nanoscale Res Lett, 7, 33 (2012). http://dx.doi.org/10.1186/1556-276X-7-33.
DOI
ScienceOn
|
127 |
Evanoff K, Benson J, Schauer M, Kovalenko I, Lashmore D, Ready WJ, Yushin G. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. ACS Nano, 6, 9837 (2012). http://dx.doi.org/10.1021/nn303393p.
DOI
ScienceOn
|
128 |
Lee NS, Chung DS, Han IT, Kang JH, Choi YS, Kim HY, Park SH, Jin YW, Yi WK, Yun MJ, Jung JE, Lee CJ, You JH, Jo SH, Lee CG, Kim JM. Application of carbon nanotubes to field emission displays. Diamond Relat Mater, 10, 265 (2001). http://dx.doi.org/10.1016/S0925-9635(00)00478-7.
DOI
ScienceOn
|
129 |
Meunier V, Kephart J, Roland C, Bernholc J. Ab initio investigations of lithium diffusion in carbon nanotube systems. Phys Rev Lett, 88, 075506 (2002). http://dx.doi.org/10.1103/PhysRevLett.88.075506.
DOI
ScienceOn
|
130 |
Frackowiak E, Beguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon, 40, 1775 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00045-3.
DOI
ScienceOn
|
131 |
Niu C, Sichel EK, Hoch R, Moy D, Tennent H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett, 70, 1480 (1997). http://dx.doi.org/10.1063/1.118568.
DOI
ScienceOn
|
132 |
Ma RZ, Liang J, Wei BQ, Zhang B, Xu CL, Wu DH. Processing and performance of electric double-layer capacitors with block-type carbon nanotube electrodes. Bull Chem Soc Jpn, 72, 2563 (1999).
DOI
ScienceOn
|
133 |
Jurewicz K, Delpeux S, Bertagna V, Beguin F, Frackowiak E. Supercapacitors from nanotubes/polypyrrole composites. Chem Phys Lett, 347, 36 (2001). http://dx.doi.org/10.1016/S0009-2614(01)01037-5.
DOI
ScienceOn
|
134 |
Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M. Carbon nanotube actuators. Science, 284, 1340 (1999). http://dx.doi.org/10.1126/science.284.5418.1340.
DOI
ScienceOn
|
135 |
Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM. Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature, 394, 52 (1998). http://dx.doi.org/10.1038/27873.
DOI
ScienceOn
|
136 |
Collins PG, Bradley K, Ishigami M, Zettl A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 287, 1801 (2000). http://dx.doi.org/10.1126/science.287.5459.1801.
DOI
ScienceOn
|
137 |
Varghese OK, Kichambre PD, Gong D, Ong KG, Dickey EC, Grimes CA. Gas sensing characteristics of multi-wall carbon nanotubes. Sens Actuators B, 81, 32 (2001). http://dx.doi.org/10.1016/S0925-4005(01)00923-6.
DOI
ScienceOn
|
138 |
Wood JR, Zhao Q, Frogley MD, Meurs ER, Prins AD, Peijs T, Dunstan DJ, Wagner HD. Carbon nanotubes: from molecular to macroscopic sensors. Phys Rev B, 62, 7571 (2000). http://dx.doi.org/10.1103/PhysRevB.62.7571.
DOI
ScienceOn
|
139 |
Chopra S, Pham A, Gaillard J, Parker A, Rao AM. Carbon-nanotube-based resonant-circuit sensor for ammonia. Appl Phys Lett, 80, 4632 (2002). http://dx.doi.org/10.1063/1.1486481.
DOI
ScienceOn
|
140 |
Wood JR, Wagner HD. Single-wall carbon nanotubes as molecular pressure sensors. Appl Phys Lett, 76, 2883 (2000). http://dx.doi.org/10.1063/1.126505.
DOI
ScienceOn
|
141 |
Banhart F, Grobert N, Terrones M, Charlier JC, Ajayan PM. Metal atoms in carbon nanotubes and related nanoparticles. Int J Mod Phys B, 15, 4037 (2001). http://dx.doi.org/10.1142/S0217979201007944.
DOI
ScienceOn
|
142 |
Park SJ, Lee SY. Hydrogen storage behaviors of carbon nanotubes/ metal-organic frameworks-5 hybrid composites. Carbon Lett, 10, 19 (2009). http://dx.doi.org/10.5714/CL.2009.10.1.019.
과학기술학회마을
DOI
ScienceOn
|
143 |
Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286, 1127 (1999). http://dx.doi.org/10.1126/science.286.5442.1127.
DOI
ScienceOn
|
144 |
Gadd GE, Blackford M, Moricca S, Webb N, Evans PJ, Smith AM, Jacobsen G, Leung S, Day A, Hua Q. The world's smallest gas cylinders? Science, 277, 933 (1997). http://dx.doi.org/10.1126/science.277.5328.933.
DOI
ScienceOn
|
145 |
Terrones M, Kamalakaran R, Seeger T, Ruhle M. Novel nanoscale gas containers: encapsulation of in nanotubes. Chem Commun, (23), 2335 (2000). http://dx.doi.org/10.1039/B008253H.
DOI
|
146 |
Trasobares S, Stephan O, Colliex C, Hug G, Hsu WK, Kroto HW, Walton DRM. Electron beam puncturing of carbon nanotube containers for release of stored gas. Eur Phys J B, 22, 117 (2001). http://dx.doi.org/10.1007/BF01322353.
DOI
|
147 |
Gordon PA, Saeger RB. Molecular modeling of adsorptive energy storage: hydrogen storage in single-walled carbon nanotubes. Ind Eng Chem Res, 38, 4647 (1999). http://dx.doi.org/10.1021/ie990503h.
DOI
ScienceOn
|
148 |
Chambers A, Park C, Baker RTK, Rodriguez NM. Hydrogen storage in graphite nanofibers. J Phys Chem B, 102, 4253 (1998). http://dx.doi.org/10.1021/jp980114l.
DOI
ScienceOn
|
149 |
Chen P, Wu X, Lin J, Tan KL. High uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science, 285, 91 (1999). http://dx.doi.org/10.1126/science.285.5424.91.
DOI
ScienceOn
|
150 |
Hirscher M, Becher M, Haluska M, Quintel A, Skakalova V, Choi YM, Dettlaff-Weglikowska U, Roth S, Stepanek I, Bernier P, Leonhardt A, Fink J. Hydrogen storage in carbon nanostructures. J Alloys Compd, 330-332, 654 (2002). http://dx.doi.org/10.1016/S0925-8388(01)01643-7.
DOI
ScienceOn
|
151 |
Meregalli V, Parrinello M. Review of theoretical calculations of hydrogen storage in carbon-based materials. Appl Phys A, 72, 143 (2001). http://dx.doi.org/10.1007/s003390100789.
DOI
|
152 |
Lee SM, An KH, Lee YH, Seifert G, Frauenheim T. A hydrogen storage mechanism in single-walled carbon nanotubes. J Am Chem Soc, 123, 5059 (2001). http://dx.doi.org/10.1021/ja003751+.
DOI
ScienceOn
|
153 |
Darkrim FL, Malbrunot P, Tartaglia GP. Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy, 27, 193 (2002). http://dx.doi.org/10.1016/S0360-3199(01)00103-3.
DOI
ScienceOn
|
154 |
Tanaka H, El-Merraoui M, Steele WA, Kaneko K. Methane adsorption on single-walled carbon nanotube: a density functional theory model. Chem Phys Lett, 352, 334 (2002). http://dx.doi.org/10.1016/S0009-2614(01)01486-5.
DOI
ScienceOn
|
155 |
Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE. Nanotubes as nanoprobes in scanning probe microscopy. Nature, 384, 147 (1996). http://dx.doi.org/10.1038/384147a0.
DOI
ScienceOn
|
156 |
Venema LC, Wildoer JWG, Tuinstra HLJT, Dekker C, Rinzler AG, Smalley RE. Length control of individual carbon nanotubes by nanostructuring with a scanning tunneling microscope. Appl Phys Lett, 71, 2629 (1997). http://dx.doi.org/10.1063/1.120161.
DOI
ScienceOn
|
157 |
Wagner FE, Haslbeck S, Stievano L, Calogero S, Pankhurst QA, Martinek KP. Before striking gold in gold-ruby glass. Nature, 407, 691 (2000). http://dx.doi.org/10.1038/35037661.
DOI
ScienceOn
|
158 |
Franks A. Nanotechnology. J Phys E, 20, 1442 (1987). http://dx.doi.org/10.1088/0022-3735/20/12/001.
DOI
ScienceOn
|
159 |
Taniguchi N. On the basic concept of 'nano-technology'. Proceedings of the International Conference on Production Engineering, Tokyo, Japan, Part II (1974).
|
160 |
Kim P, Lieber CM. Nanotube nanotweezers. Science, 286, 2148 (1999). http://dx.doi.org/10.1126/science.286.5447.2148.
DOI
ScienceOn
|
161 |
Postma HWC, de Jonge M, Yao Z, Dekker C. Electrical transport through carbon nanotube junctions created by mechanical manipulation. Phys Rev B, 62, R10653 (2000). http://dx.doi.org/10.1103/PhysRevB.62.R10653.
DOI
ScienceOn
|
162 |
Park JY, Yaish Y, Brink M, Rosenblatt S, McEuen PL. Electrical cutting and nicking of carbon nanotubes using an atomic force microscope. Appl Phys Lett, 80, 4446 (2002). http://dx.doi.org/10.1063/1.1485126.
DOI
ScienceOn
|
163 |
Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science, 294, 1317 (2001). http://dx.doi.org/10.1126/science.1065824.
DOI
ScienceOn
|
164 |
Huang Y, Duan X, Cui Y, Lauhon LJ, Kim KH, Lieber CM. Logic gates and computation from assembled nanowire building blocks. Science, 294, 1313 (2001). http://dx.doi.org/10.1126/science.1066192.
DOI
ScienceOn
|
165 |
Derycke V, Martel R, Appenzeller J, Avouris P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett, 1, 453 (2001). http://dx.doi.org/10.1021/nl015606f.
DOI
ScienceOn
|
166 |
Javey A, Wang Q, Ural A, Li YM, Dai HJ. Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators. Nano Lett, 2, 929 (2002).
DOI
ScienceOn
|
167 |
Collins PG, Arnold MS, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 292, 706 (2001). http://dx.doi.org/10.1126/science.1058782.
DOI
ScienceOn
|