• Title/Summary/Keyword: CNT yarn

Search Result 5, Processing Time 0.027 seconds

Room Temperature Hydrogen Gas Sensor Based on Carbon Nanotube Yarn (상온감지 가능한 탄소나노튜브 방적사 기반의 수소 감지 센서)

  • Kim, Jae Keon;Lee, Junyeop;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.132-136
    • /
    • 2018
  • We report the development of a room-temperature hydrogen ($H_2$) gas sensor based on carbon nanotubes (CNT) yarn. To detect $H_2$ gas in room temperature, a highly ordered CNT yarn was placed on a substrate from a spin-capable CNT forest, followed by the deposition of a platinum (Pt) layer on surface of the CNT yarn. To examine the effect of the Pt-layer on the response of the CNT sensor, a comparative sensing performance was characterized on both the Pt deposited and non-deposited CNT yarn at room temperature. The Pt-CNT yarn yielded high response, whereas the non-deposited CNT yarn showed negligible response for $H_2$ detection at room temperature. Pt is a reliable and efficient catalyst that can substantially improve the detection of $H_2$ gas by chemical sensitization via a "spillover" effect. It can be efficiently utilized to increase the sensitivity and selectivity as well as to obtain fast response and recovery times.

CNT-BASED FIELD EMISSION X-RAY SOURCE

  • Kim, Hyun Suk;Lee, Choong Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.433-433
    • /
    • 2016
  • Carbon nanotubes (CNT) emitter has widely become an attractive mechanism that draws growing interests for cold cathode field emission. CNT yarns have demonstrated its potential as excellent field emitters. It was demonstrated that a small focal spot size was achieved by manipulating some electrical parameters, such as applied bias voltage at the mesh gate, and electrostatic focal lenses, geometrical parameters, such as axial distances of the anode, and the electrostatic focal lens from the cathode assembly, and the dimension of the opening of the electrostatic lens. Electrical-optics software was used to systematically investigate the behavior of the electron beam trajectory when the aforementioned variables were manipulated. The results of the experiment agree with the theoretical simulation results. Each variable has an individual effect on the electron beam focal spot size impinging on the target anode. An optimum condition of the parameters was obtained producing good quality of X-ray images. Also, MWCNT yarn was investigated for field emission characteristics and its contribution in the X-ray generation. The dry spinning method was used to fabricate MWCNT yarn from super MWCNTs, which was fabricated by MW-PECVD. The MWCNT yarn has a significant field emission capability in both diode and the triode X-ray generation structure compared to a MWCNT. The low-voltage-field emission of the MWCNT yarn can be attributed to the field enhancing effect of the yarn due to its shape and the contribution of the high-aspect-ratio nanotubes that protrude from the sides of the yarn. Observations of the use of filters on the development of X-ray images were also demonstrated. The amount of exposure time of the samples to the X-ray was also manipulated. The MWCNT yarn can be a good candidate for use in the low voltage field emission application of X-ray imaging.

  • PDF

A X-ray Tube Using Field Emitter Made by Multi-walled Carbon Nanotube Yarns

  • Kim, Hyun-Suk;Castro, Edward Joseph D.;Kwak, Seung-Im;Ju, Jin-Young;Hwang, Yong-Gyoo;Lee, Choong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.392-392
    • /
    • 2011
  • Carbon nanotubes (CNT) emitter has widely become an attractive mechanism that draws growing interests for cold cathode field emission.$^{1,2}$ CNT yarns have demonstrated its potential as excellent field emitters.$^3$ Extensive simulations were carried out in designing a CNT yarn-based cathode assembly. The focal spot size dependence on the anode surface of the geometric parameters such as axial distance of the electrostatic focus lens from the cathode and the applied bias voltages at the cathode, grid mesh and electrostatic focus lens were studied. The detailed computer simulations using Opera 3D electromagnetic software$^4$ had revealed that a remarkable size of focal spot under a focusing lens triode type set-up design was achieved. The result of this optimization simulation would then be applied for the construction of the CNT yarn based micro-focus x-ray tube with its field emission characteristics evaluated.

  • PDF

Analysis of a Spun-CNT Based X-ray Source

  • Kim, Hyun Suk;Castro, Edward Joseph D.;Hun, Choong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.639-639
    • /
    • 2013
  • In this research we report the significant contribution of the as-spun multi-walled carbon nanotube (MWCNT) on the x-ray images formation using a low tube voltage x-ray source. The MWCNT, which was used for the fabrication of the spun CNT, was grown using a microwave plasma-enhanced chemical vapor deposition machine. Electrical-optics simulation software was utilized to determine the electron field emission trajectory of the triode-structure-as-spun CNT-based x-ray source. It was shown that a significant amount of converging electrons hit the target anode producing a clear x-ray image. These x-ray images where produced at a small amount of anode current of 0.67 mA at a tube voltage of 5 kV with the gate voltage of 0 V. Also, comparisons of the radiographs at various exposure times of the sample where analyzed with and without an x-ray dose filter. Results showed that spatially-resolved images were formed using the as-spun CNT at a low tube voltage with a $54-{\mu}m$ Al x-ray filter. This study can be used for low-voltage medical applications.

  • PDF

Fabrication and Applications of Carbon Nanotube Fibers

  • Choo, Hungo;Jung, Yeonsu;Jeong, Youngjin;Kim, Hwan Chul;Ku, Bon-Cheol
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.191-204
    • /
    • 2012
  • Carbon nanotubes (CNTs) have exceptional mechanical, electrical, and thermal properties compared with those of commercialized high-performance fibers. For use in the form of fabrics that can maintain such properties, individual CNTs should be held together in fibers or made into yarns twisted out of the fibers. Typical methods that are used for such purposes include (a) surfactant-based coagulation spinning, which injects a polymeric binder between CNTs to form fibers; (b) liquid-crystalline spinning, which uses the nature of CNTs to form liquid crystals under certain conditions; (c) direct spinning, which can produce CNT fibers or yarns at the same time as synthesis by introducing a carbon source into a vertical furnace; and (d) forest spinning, which draws and twists CNTs grown vertically on a substrate. However, it is difficult for those CNT fibers to express the excellent properties of individual CNTs as they are. As solutions to this problem, post-treatment processes are under development for improving the production process of CNT fibers or enhancing their properties. This paper discusses the recent methods of fabricating CNT fibers and examines some post-treatment processes for property enhancement and their applications.