• Title/Summary/Keyword: CNT/PDMS

Search Result 16, Processing Time 0.03 seconds

A Study of Detection Properties of Piezoresistive CNT/PDMS Devices with Porous Structure (다공성 구조를 가진 압저항 CNT/PDMS 소자의 감지특성 연구)

  • Wonjun Lee;Sang Hoon Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.165-172
    • /
    • 2024
  • In this study, we investigated the detection properties of piezoresistive carbon nanotubes/polydimethylsiloxane (CNT/PDMS) devices with porous structures under applied pressure. The device, having dimensions of 10 mm × 10 mm × 5 mm, was fabricated with a porosity of 74.5%. To fabricate piezoresistive CNT/PDMS devices, CNTs were added using two different methods. In the first method, the CNTs were mixed with PDMS before the fabrication of the porous structure, while in the second, the CNTs were coated after the fabrication of the porous structure. Various detection properties of the fabricated devices were examined at different applied pressures. The CNT-coated device exhibited stable outputs with lesser variation than the CNT-mixed device. Moreover, the CNT-coated device exhibited improved reaction properties. The response time of the CNT-coated device was 1 min, which was approximately about 20 times faster than that of the CNT-mixed device. Considering these properties, CNT-coated devices are more suitable for sensing devices. To verify the CNT-coated device as a real sensor, it was applied to the gripping sensor system. A multichannel sensor system was used to measure the pressure distribution of the gripping sensor system. Under various gripping conditions, this system successfully measured the distributed pressures and exhibited stable dynamic responses.

Waveform characteristics of ultrasonic wave generated from CNT/PDMS composite (CNT/PDMS 복합체로부터 방사된 초음파의 파형 특성)

  • Kim, Gisuk;Kim, Moojoon;Ha, Kanglyeol;Lee, Jooho;Paeng, Dong-Guk;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.459-466
    • /
    • 2019
  • When a laser pulse is irradiated on a CNT (Carbon Nanotube) and PDMS (Poly dimethylsiloxane) composite coated on a transparent PMMA (Poly methyl methacrylate) substrate, a strong ultrasonic wave is generated due to the thermoelastic effect. In this paper, the thermoacoustic theory related to the wave generation by the CNT/PDMS composite was established. The waveforms of ultrasonic waves when a laser pulse having a Gaussian waveform is irradiated on the composite with a thickness of $20{\mu}m$ were numerically simulated. From the results, it was confirmed that ultrasonic shock waves can be generated from the CNT/PDMS composite and the waveforms are changed little even if the physical properties of the composite are changed by ${\pm}20%$. It was found that the peak positive and negative pressures increase as the thermal expansion coefficient increases, or as density, heat capacity and sound speed decreased. However, those changes were not so sensitive with thermal conductivity. In addition, the physical properties of the CNT/PDMS composite fabricated in this study were estimated from the comparison of the measurement and simulation results.

Fabrication of a CNT Filter for a Microdialysis Chip

  • An, Yun-Ho;Song, Si-Mon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.279-284
    • /
    • 2006
  • This paper describes the fabrication methods of a carbon nanotube (CNT) filter and a microdialysis chip. A CNT filter can help perform dialysis on a microfluidic chip. In this study, a membrane type of a CNT filter is fabricated and located in a microfluidic chip. The filter plays a role of a dialysis membrane in a microfluidic chip. In the fabrication process of a CNT filter, individual CNTs are entangled each other by amide bonding that is catalyzed by 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The chemically treated CNTs are shaped to form a CNT filter using a PDMS film-mold and vacuum filtering. Then, the CNT filter is sandwiched between PDMS substrates, and they are bonded together using a thin layer of PDMS prepolymer as adhesive. The PDMS substrates are fabricated to have a microchannel by standard photo-lithography technique.

Preparation and PTC Characteristics of Poly(dimethylsiloxane) Modified EPDM/HDPE Composite (Poly(dimethylsiloxane) 변성 EPDM/HDPE 복합체의 제조와 PTC 특성)

  • Kang, Doo-Whan;Kim, Sung-Soo
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.353-358
    • /
    • 2008
  • Maleated ethylene-propylene-diene terpolymer (MEPDM) was prepared from solution polymerization of EPDM and maleic anhydride. MEPDM-grafted-poly (dimethylsiloxane) (PDMS) copolymer (MEPDM-g-PDMS) was prepared from copolymerization of MEPDM with $\alpha$,$\omega$-hydroxyl group terminated PDMS. The MEPDM-g-PDMS was compounded with HDPE and 4-ethoxybenzoic acid modified MWCNT at $180^{\circ}C$ and positive temperature coefficient (PCT) behavior of the MWCNT composite was investigated. Surface modification of MWCNT enabled it to be more uniformly dispersed in polymer matrix and decreased aggregation of particles. Electrical resistivity of the composite was abruptly increased at melting temperature and PTC intensity of 2.3 was obtained at 15% loading of surface modified CNT.

Temperature-dependent Resistance Change of Conductive CNT Thin-film (전도성 CNT 박막의 온도에 따른 저항 변화도 연구)

  • Kwon, Min-Kyu;Hong, Yong-Taek
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.151-157
    • /
    • 2009
  • This paper reports the resistance change of conductive carbon nanotube (CNT) thin-films according to the temperature variation. Resistance of conductive CNT thin-films intrinsically has good thermal sensitivity, but shows environmental dependency. In order to reduce environmental effects, we spin-coated polydimethylsiloxane (PDMS) on the conductive CNT thin-films. We observed that conductive CNT thin-films with a PDMS encapsulation layer showed little environmental dependency, but more linear and stable temperature dependencies. If proper encapsulation is provided, conductive CNT thin-films can be used for temperature sensor applications.

Nanocomposite-Based Energy Converters for Long-Range Focused Ultrasound Treatment

  • Lee, Seung Jin;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.369-369
    • /
    • 2016
  • A nanostructure composite is a highly suitable substance for photoacoustic ultrasound generation. This allows an input laser beam (typically, nanosecond pulse duration) to be efficiently converted to an ultrasonic output with tens-of-MHz frequency. This type of energy converter has been demonstrated by using a carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite film that exhibit high optical absorption, rapid heat transition, and mechanical durability, all of which are necessary properties for high-amplitude ultrasound generation. In order to develop the CNT-PDMS composite film, a high-temperature chemical vapor deposition (HTCVD) method has been commonly used so far to grow CNT and then produce a CNT-PDMS composite structure. Here, instead of the complex HTCVD, we use a mixed solution of hydrophobic multi-walled CNT and dimethylformamid (DMF) and fabricate a solution-processed CNT-PDMS composite film over a spherically concave substrate, i.e. a focal energy converter. As the solution process can be applied over a large area, we could easily fabricate the focal transmitter that focuses the photoacoustic output at the moment of generation from the CNT-PDMS composite layer. With this method, we developed photoacoustic energy converters with a large diameter (>25 mm) and a long focal length (several cm). The lens performance was characterized in terms of output pressure amplitude for an incident pulsed laser energy and focal spot dimension in both lateral and axial. Due to the long focal length, we expect that the new lens can be applied for long-range ultrasonic treatment, e.g. biomedical therapy.

  • PDF

Development of Stretchable PZT/PDMS Nanocomposite Film with CNT Electrode

  • Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.400-403
    • /
    • 2013
  • The piezoelectric composite film of ferroelectric PZT ceramic ($PbZr_xTi_{1-x}O_3$) and polymer (PDMS, Polydimethylsiloxane) was prepared to improve the flexibility of piezoelectric material. The bar coating method was applied to fabricate flexible nanocomposite film with large surface area by low cost process. In the case of using metal electrode on the composite film, although there is no problem by bending process, the electrode is usually broken away from the film by stretching process. However, the well-attached, flexible CNT electrode on PZT/PDMS film improved flexibility, especially stretchability. PZT particles was usually settled down into polymer matrix due to gravity of the weighty particle, so to improve the dispersion of PZT powder in polymer matrix, small amount of additives (CNT powder, Carbon nanotube powder) was physically mixed with the matrix. By stretching the film, an output voltage of PZT(70 wt%)/PDMS with CNT (0.5 wt%) was measured.

Development of Nanostructured Light-Absorbers for Ultrasound Generation by Using a Solution-Based Process

  • Sang, Pil Gyu;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.377-377
    • /
    • 2016
  • Under nanosecond-pulsed laser irradiation, light-absorbing thin films have been used for photoacoustic transmitters for ultrasound generation. Especially, nanostructured absorbers are attractive due to high optical absorption and efficient thermoacoustic energy conversion: for example, 2-dimensional (2-D) gold nanostructure array, synthetic gold nanoparticles, carbon nanotubes (CNTs), and reduced graphene oxides. Among them, CNT has been used to fabricate a composite film with polydimethylsiloxane (PDMS) that exhibits excellent photoacoustic conversion performance for high-frequency, high-amplitude ultrasound generation. Previously, CNT-PDMS nanocomposite films were made by using a high-temperature chemical vapor deposition (HTCVD) process for CNT growth. However, this approach is not suitable to fabricate large-area CNT films (>several cm2). This is because a chamber dimension of HTCVD is limited and also the process often causes nonuniform CNT growth when the film area increases. As an alternative approach, a solution-based process can be used to overcome these issues. We develop PDMS composite transmitters, based on the solution process, using several nanostructured light-absorbers such as CNTs, nanoink powders, and imprinted regular arrays of gold nanostructure. We compare fabrication processes of each composite transmitters and photoacoustic output performance.

  • PDF

Development of PDMS-based Drag Force-type Flowmeter with Graphite-CNT Composite as Piezoresistive Material (흑연과 CNT 복합체를 압저항체로 하는 PDMS 기반의 바람저항형 유속센서 개발)

  • Sang Jun Park;Min Gi Shin;Noh Yeon Kim;Sang Hoon Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.44-50
    • /
    • 2023
  • In this study, a polydimethylsiloxane (PDMS)-based drag force-type flowmeter was fabricated using a graphite-carbon nanotube (CNT) composite as a piezoresistive material and evaluated. The device was in the form of a cantilever, which was composed of the soft material, PDMS, and fabricated using a mold manufactured by a three-dimensional printer. The cost-effective graphite was mixed with CNTs to serve as a piezoresistive material. The optimal mixing ratio was investigated, and the piezoresistive material formed using a graphite:PDMS:CNT ratio of 1.5:1:0.01 was adopted, which showed a stable output and a high sensitivity. Various forward and backward air flows in the range of 0-10 m/s were measured using the fabricated flowmeter, and both tensile and compression characteristics were evaluated. The measured results showed a stable output, with the resistance change gradually increasing with the air flow rate. Repeatability characteristics were also tested at a repeated air flow of 10 m/s, and the flowmeter responded to the applied air flow well. Consequently, the fabricated device has a high sensitivity and can be used as a flowmeter.