• Title/Summary/Keyword: CNN Model

Search Result 974, Processing Time 0.027 seconds

Impacts of Seasonal and Interannual Variabilities of Sea Surface Temperature on its Short-term Deep-learning Prediction Model Around the Southern Coast of Korea (한국 남부 해역 SST의 계절 및 경년 변동이 단기 딥러닝 모델의 SST 예측에 미치는 영향)

  • JU, HO-JEONG;CHAE, JEONG-YEOB;LEE, EUN-JOO;KIM, YOUNG-TAEG;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.49-70
    • /
    • 2022
  • Sea Surface Temperature (SST), one of the ocean features, has a significant impact on climate, marine ecosystem and human activities. Therefore, SST prediction has been always an important issue. Recently, deep learning has drawn much attentions, since it can predict SST by training past SST patterns. Compared to the numerical simulations, deep learning model is highly efficient, since it can estimate nonlinear relationships between input data. With the recent development of Graphics Processing Unit (GPU) in computer, large amounts of data can be calculated repeatedly and rapidly. In this study, Short-term SST will be predicted through Convolutional Neural Network (CNN)-based U-Net that can handle spatiotemporal data concurrently and overcome the drawbacks of previously existing deep learning-based models. The SST prediction performance depends on the seasonal and interannual SST variabilities around the southern coast of Korea. The predicted SST has a wide range of variance during spring and summer, while it has small range of variance during fall and winter. A wide range of variance also has a significant correlation with the change of the Pacific Decadal Oscillation (PDO) index. These results are found to be affected by the intensity of the seasonal and PDO-related interannual SST fronts and their intensity variations along the southern Korean seas. This study implies that the SST prediction performance using the developed deep learning model can be significantly varied by seasonal and interannual variabilities in SST.

A Study on Deep Learning based Aerial Vehicle Classification for Armament Selection (무장 선택을 위한 딥러닝 기반의 비행체 식별 기법 연구)

  • Eunyoung, Cha;Jeongchang, Kim
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.936-939
    • /
    • 2022
  • As air combat system technologies developed in recent years, the development of air defense systems is required. In the operating concept of the anti-aircraft defense system, selecting an appropriate armament for the target is one of the system's capabilities in efficiently responding to threats using limited anti-aircraft power. Much of the flying threat identification relies on the operator's visual identification. However, there are many limitations in visually discriminating a flying object maneuvering high speed from a distance. In addition, as the demand for unmanned and intelligent weapon systems on the modern battlefield increases, it is essential to develop a technology that automatically identifies and classifies the aircraft instead of the operator's visual identification. Although some examples of weapon system identification with deep learning-based models by collecting video data for tanks and warships have been presented, aerial vehicle identification is still lacking. Therefore, in this paper, we present a model for classifying fighters, helicopters, and drones using a convolutional neural network model and analyze the performance of the presented model.

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network (합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델)

  • Kim, Hyung-Jin;Kim, Kwang-Sik;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

Comparative study of data augmentation methods for fake audio detection (음성위조 탐지에 있어서 데이터 증강 기법의 성능에 관한 비교 연구)

  • KwanYeol Park;Il-Youp Kwak
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • The data augmentation technique is effectively used to solve the problem of overfitting the model by allowing the training dataset to be viewed from various perspectives. In addition to image augmentation techniques such as rotation, cropping, horizontal flip, and vertical flip, occlusion-based data augmentation methods such as Cutmix and Cutout have been proposed. For models based on speech data, it is possible to use an occlusion-based data-based augmentation technique after converting a 1D speech signal into a 2D spectrogram. In particular, SpecAugment is an occlusion-based augmentation technique for speech spectrograms. In this study, we intend to compare and study data augmentation techniques that can be used in the problem of false-voice detection. Using data from the ASVspoof2017 and ASVspoof2019 competitions held to detect fake audio, a dataset applied with Cutout, Cutmix, and SpecAugment, an occlusion-based data augmentation method, was trained through an LCNN model. All three augmentation techniques, Cutout, Cutmix, and SpecAugment, generally improved the performance of the model. In ASVspoof2017, Cutmix, in ASVspoof2019 LA, Mixup, and in ASVspoof2019 PA, SpecAugment showed the best performance. In addition, increasing the number of masks for SpecAugment helps to improve performance. In conclusion, it is understood that the appropriate augmentation technique differs depending on the situation and data.

DNA (Data, Network, AI) Based Intelligent Information Technology (DNA (Data, Network, AI) 기반 지능형 정보 기술)

  • Youn, Joosang;Han, Youn-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.247-249
    • /
    • 2020
  • In the era of the 4th industrial revolution, the demand for convergence between ICT technologies is increasing in various fields. Accordingly, a new term that combines data, network, and artificial intelligence technology, DNA (Data, Network, AI) is in use. and has recently become a hot topic. DNA has various potential technology to be able to develop intelligent application in the real world. Therefore, this paper introduces the reviewed papers on the service image placement mechanism based on the logical fog network, the mobility support scheme based on machine learning for Industrial wireless sensor network, the prediction of the following BCI performance by means of spectral EEG characteristics, the warning classification method based on artificial neural network using topics of source code and natural language processing model for data visualization interaction with chatbot, related on DNA technology.

Earthquake events classification using convolutional recurrent neural network (합성곱 순환 신경망 구조를 이용한 지진 이벤트 분류 기법)

  • Ku, Bonhwa;Kim, Gwantae;Jang, Su;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.592-599
    • /
    • 2020
  • This paper proposes a Convolutional Recurrent Neural Net (CRNN) structure that can simultaneously reflect both static and dynamic characteristics of seismic waveforms for various earthquake events classification. Addressing various earthquake events, including not only micro-earthquakes and artificial-earthquakes but also macro-earthquakes, requires both effective feature extraction and a classifier that can discriminate seismic waveform under noisy environment. First, we extract the static characteristics of seismic waveform through an attention-based convolution layer. Then, the extracted feature-map is sequentially injected as input to a multi-input single-output Long Short-Term Memory (LSTM) network structure to extract the dynamic characteristic for various seismic event classifications. Subsequently, we perform earthquake events classification through two fully connected layers and softmax function. Representative experimental results using domestic and foreign earthquake database show that the proposed model provides an effective structure for various earthquake events classification.

Fully Automatic Heart Segmentation Model Analysis Using Residual Multi-Dilated Recurrent Convolutional U-Net (Residual Multi-Dilated Recurrent Convolutional U-Net을 이용한 전자동 심장 분할 모델 분석)

  • Lim, Sang Heon;Lee, Myung Suk
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • In this paper, we proposed that a fully automatic multi-class whole heart segmentation algorithm using deep learning. The proposed method is based on U-Net architecture which consist of recurrent convolutional block, residual multi-dilated convolutional block. The evaluation was accomplished by comparing automated analysis results of the test dataset to the manual assessment. We obtained the average DSC of 96.88%, precision of 95.60%, and recall of 97.00% with CT images. We were able to observe and analyze after visualizing segmented images using three-dimensional volume rendering method. Our experiment results show that proposed method effectively performed to segment in various heart structures. We expected that our method can help doctors and radiologist to make image reading and clinical decision.

A Smart Refrigerator System based on Internet of Things (IoT 기반 스마트 냉장고 시스템)

  • Kim, Hanjin;Lee, Seunggi;Kim, Won-Tae
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.156-161
    • /
    • 2018
  • Recently, as the population rapidly increases, food shortages and waste are emerging serious problem. In order to solve this problem, various countries and enterprises are trying research and product development such as a study of consumers' purchasing patterns of food and a development of smart refrigerator using IoT technology. However, the smart refrigerators which currently sold have high price issue and another waste due to malfunction and breakage by complicated configurations. In this paper, we proposed a low-cost smart refrigerator system based on IoT for solving the problem and efficient management of ingredients. The system recognizes and registers ingredients through QR code, image recognition, and speech recognition, and can provide various services of the smart refrigerator. In order to improve an accuracy of image recognition, we used a model using a deep learning algorithm and proved that it is possible to register ingredients accurately.

A Study on the Evaluation of Optimal Program Applicability for Face Recognition Using Machine Learning (기계학습을 이용한 얼굴 인식을 위한 최적 프로그램 적용성 평가에 대한 연구)

  • Kim, Min-Ho;Jo, Ki-Yong;You, Hee-Won;Lee, Jung-Yeal;Baek, Un-Bae
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • This study is the first attempt to raise face recognition ability through machine learning algorithm and apply to CRM's information gathering, analysis and application. In other words, through face recognition of VIP customer in distribution field, we can proceed more prompt and subdivided customized services. The interest in machine learning, which is used to implement artificial intelligence, has increased, and it has become an age to automate it by using machine learning beyond the way that a person directly models an object recognition process. Among them, Deep Learning is evaluated as an advanced technology that shows amazing performance in various fields, and is applied to various fields of image recognition. Face recognition, which is widely used in real life, has been developed to recognize criminals' faces and catch criminals. In this study, two image analysis models, TF-SLIM and Inception-V3, which are likely to be used for criminal face recognition, were selected, analyzed, and implemented. As an evaluation criterion, the image recognition model was evaluated based on the accuracy of the face recognition program which is already being commercialized. In this experiment, it was evaluated that the recognition accuracy was good when the accuracy of the image classification was more than 90%. A limit of our study which is a way to raise face recognition is left as a further research subjects.

An Automatic Data Construction Approach for Korean Speech Command Recognition

  • Lim, Yeonsoo;Seo, Deokjin;Park, Jeong-sik;Jung, Yuchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.17-24
    • /
    • 2019
  • The biggest problem in the AI field, which has become a hot topic in recent years, is how to deal with the lack of training data. Since manual data construction takes a lot of time and efforts, it is non-trivial for an individual to easily build the necessary data. On the other hand, automatic data construction needs to handle data quality issue. In this paper, we introduce a method to automatically extract the data required to develop Korean speech command recognizer from the web and to automatically select the data that can be used for training data. In particular, we propose a modified ResNet model that shows modest performance for the automatically constructed Korean speech command data. We conducted an experiment to show the applicability of the command set of the health and daily life domain. In a series of experiments using only automatically constructed data, the accuracy of the health domain was 89.5% in ResNet15 and 82% in ResNet8 in the daily lives domain, respectively.