• 제목/요약/키워드: CNN Model

검색결과 974건 처리시간 0.026초

Deep Learning-Based Defect Detection in Cu-Cu Bonding Processes

  • DaBin Na;JiMin Gu;JiMin Park;YunSeok Song;JiHun Moon;Sangyul Ha;SangJeen Hong
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.135-142
    • /
    • 2024
  • Cu-Cu bonding, one of the key technologies in advanced packaging, enhances semiconductor chip performance, miniaturization, and energy efficiency by facilitating rapid data transfer and low power consumption. However, the quality of the interface bonding can significantly impact overall bond quality, necessitating strategies to quickly detect and classify in-process defects. This study presents a methodology for detecting defects in wafer junction areas from Scanning Acoustic Microscopy images using a ResNet-50 based deep learning model. Additionally, the use of the defect map is proposed to rapidly inspect and categorize defects occurring during the Cu-Cu bonding process, thereby improving yield and productivity in semiconductor manufacturing.

  • PDF

Early Detection of Rice Leaf Blast Disease using Deep-Learning Techniques

  • Syed Rehan Shah;Syed Muhammad Waqas Shah;Hadia Bibi;Mirza Murad Baig
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.211-221
    • /
    • 2024
  • Pakistan is a top producer and exporter of high-quality rice, but traditional methods are still being used for detecting rice diseases. This research project developed an automated rice blast disease diagnosis technique based on deep learning, image processing, and transfer learning with pre-trained models such as Inception V3, VGG16, VGG19, and ResNet50. The modified connection skipping ResNet 50 had the highest accuracy of 99.16%, while the other models achieved 98.16%, 98.47%, and 98.56%, respectively. In addition, CNN and an ensemble model K-nearest neighbor were explored for disease prediction, and the study demonstrated superior performance and disease prediction using recommended web-app approaches.

YOLOv8을 이용한 화재 검출 시스템 개발 (Development of Fire Detection System using YOLOv8)

  • 이채은;박천수
    • 반도체디스플레이기술학회지
    • /
    • 제23권1호
    • /
    • pp.19-24
    • /
    • 2024
  • It is not an exaggeration to say that a single fire causes a lot of damage, so fires are one of the disaster situations that must be alerted as soon as possible. Various technologies have been utilized so far because preventing and detecting fires can never be completely accomplished with individual human efforts. Recently, deep learning technology has been developed, and fire detection systems using object detection neural networks are being actively studied. In this paper, we propose a new fire detection system that improves the previously studied fire detection system. We train the YOLOv8 model using refined datasets through improved labeling methods, derive results, and demonstrate the superiority of the proposed system by comparing it with the results of previous studies.

  • PDF

CutMix 알고리즘 기반의 일반화된 밀 머리 검출 모델 (Generalized wheat head Detection Model Based on CutMix Algorithm)

  • 여주원;박원준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.73-75
    • /
    • 2024
  • 본 논문에서는 밀 수확량을 증가시키기 위한 일반화된 검출 모델을 제안한다. 일반화 성능을 높이기 위해 CutMix 알고리즘으로 데이터를 증식시켰고, 라벨링 되지 않은 데이터를 최대한 활용하기 위해 Fast R-CNN 기반 Pseudo labeling을 사용하였다. 학습의 정확성과 효율성을 높이기 위해 사전에 훈련된 EfficientDet 모델로 학습하였으며, OOF를 이용하여 검증하였다. 최신 객체 검출 모델과 IoU(Intersection over Union)를 이용한 성능 평가 결과, 제안된 모델이 가장 높은 성능을 보이는 것을 확인하였다.

  • PDF

내시경의 위암과 위궤양 영상을 이용한 합성곱 신경망 기반의 자동 분류 모델 (Convolution Neural Network Based Auto Classification Model Using Endoscopic Images of Gastric Cancer and Gastric Ulcer)

  • 박예랑;김영재;정준원;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권2호
    • /
    • pp.101-106
    • /
    • 2020
  • Although benign gastric ulcers do not develop into gastric cancer, they are similar to early gastric cancer and difficult to distinguish. This may lead to misconsider early gastric cancer as gastric ulcer while diagnosing. Since gastric cancer does not have any special symptoms until discovered, it is important to detect gastric ulcers by early gastroscopy to prevent the gastric cancer. Therefore, we developed a Convolution Neural Network (CNN) model that can be helpful for endoscopy. 3,015 images of gastroscopy of patients undergoing endoscopy at Gachon University Gil Hospital were used in this study. Using ResNet-50, three models were developed to classify normal and gastric ulcers, normal and gastric cancer, and gastric ulcer and gastric cancer. We applied the data augmentation technique to increase the number of training data and examined the effect on accuracy by varying the multiples. The accuracy of each model with the highest performance are as follows. The accuracy of normal and gastric ulcer classification model was 95.11% when the data were increased 15 times, the accuracy of normal and gastric cancer classification model was 98.28% when 15 times increased likewise, and 5 times increased data in gastric ulcer and gastric cancer classification model yielded 87.89%. We will collect additional specific shape of gastric ulcer and cancer data and will apply various image processing techniques for visual enhancement. Models that classify normal and lesion, which showed relatively high accuracy, will be re-learned through optimal parameter search.

Remote Sensing Image Classification for Land Cover Mapping in Developing Countries: A Novel Deep Learning Approach

  • Lynda, Nzurumike Obianuju;Nnanna, Nwojo Agwu;Boukar, Moussa Mahamat
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.214-222
    • /
    • 2022
  • Convolutional Neural networks (CNNs) are a category of deep learning networks that have proven very effective in computer vision tasks such as image classification. Notwithstanding, not much has been seen in its use for remote sensing image classification in developing countries. This is majorly due to the scarcity of training data. Recently, transfer learning technique has successfully been used to develop state-of-the art models for remote sensing (RS) image classification tasks using training and testing data from well-known RS data repositories. However, the ability of such model to classify RS test data from a different dataset has not been sufficiently investigated. In this paper, we propose a deep CNN model that can classify RS test data from a dataset different from the training dataset. To achieve our objective, we first, re-trained a ResNet-50 model using EuroSAT, a large-scale RS dataset to develop a base model then we integrated Augmentation and Ensemble learning to improve its generalization ability. We further experimented on the ability of this model to classify a novel dataset (Nig_Images). The final classification results shows that our model achieves a 96% and 80% accuracy on EuroSAT and Nig_Images test data respectively. Adequate knowledge and usage of this framework is expected to encourage research and the usage of deep CNNs for land cover mapping in cases of lack of training data as obtainable in developing countries.

Design of Deep Learning-based Location information technology for Place image collecting

  • Jang, Jin-wook
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권9호
    • /
    • pp.31-36
    • /
    • 2020
  • 본 연구에서는 딥러닝 처리기술을 이용한 이미지 분석을 통하여 위치정보가 없는 사진의 위치를 사용자에게 제공하는 장소이미지 수집기술을 설계하였다. 본 서비스는 사용자가 생활 중에 관심 있는 장소의 이미지 사진을 서비스에 업로드하면 해당 장소의 이름과 위치뿐만 아니라 관련 주변 정보를 확인 할 수 있는 서비스 개발을 목적으로 설계되었다. 본 연구는 이미지에 해당하는 정보를 제공하고 그 위치 정보를 기반으로 사용자가 관심 있는 주변정보를 제공할 수 있는 서비스의 기반기술이다. 이를 통하여 다양한 서비스에 활용이 가능하다.

Understanding recurrent neural network for texts using English-Korean corpora

  • Lee, Hagyeong;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • 제27권3호
    • /
    • pp.313-326
    • /
    • 2020
  • Deep Learning is the most important key to the development of Artificial Intelligence (AI). There are several distinguishable architectures of neural networks such as MLP, CNN, and RNN. Among them, we try to understand one of the main architectures called Recurrent Neural Network (RNN) that differs from other networks in handling sequential data, including time series and texts. As one of the main tasks recently in Natural Language Processing (NLP), we consider Neural Machine Translation (NMT) using RNNs. We also summarize fundamental structures of the recurrent networks, and some topics of representing natural words to reasonable numeric vectors. We organize topics to understand estimation procedures from representing input source sequences to predict target translated sequences. In addition, we apply multiple translation models with Gated Recurrent Unites (GRUs) in Keras on English-Korean sentences that contain about 26,000 pairwise sequences in total from two different corpora, colloquialism and news. We verified some crucial factors that influence the quality of training. We found that loss decreases with more recurrent dimensions and using bidirectional RNN in the encoder when dealing with short sequences. We also computed BLEU scores which are the main measures of the translation performance, and compared them with the score from Google Translate using the same test sentences. We sum up some difficulties when training a proper translation model as well as dealing with Korean language. The use of Keras in Python for overall tasks from processing raw texts to evaluating the translation model also allows us to include some useful functions and vocabulary libraries as well.

Deep Learning을 위한 GPGPU 기반 Convolution 가속기 구현 (An Implementation of a Convolutional Accelerator based on a GPGPU for a Deep Learning)

  • 전희경;이광엽;김치용
    • 전기전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.303-306
    • /
    • 2016
  • 본 논문에서는 GPGPU를 활용하여 Convolutional neural network의 가속화 방법을 제안한다. Convolutional neural network는 이미지의 특징 값을 학습하여 분류하는 neural network의 일종으로 대량의 데이터를 학습해야하는 영상 처리에 적합하다. 기존의 Convolutional neural network의 convolution layer는 다수의 곱셈 연산을 필요로 하여 임베디드 환경에서 실시간으로 동작하기에 어려움이 있다. 본 논문에서는 이러한 단점을 해결하기 위하여 winograd convolution 연산을 통하여 곱셈 연산을 줄이고 GPGPU의 SIMT 구조를 활용하여 convolution 연산을 병렬 처리한다. 실험은 ModelSim, TestDrive를 사용하여 진행하였고 실험 결과 기존의 convolution 연산보다 처리 시간이 약 17% 개선되었다.

Gray 채널 분석을 사용한 딥페이크 탐지 성능 비교 연구 (A Comparative Study on Deepfake Detection using Gray Channel Analysis)

  • 손석빈;조희현;강희윤;이병걸;이윤규
    • 한국멀티미디어학회논문지
    • /
    • 제24권9호
    • /
    • pp.1224-1241
    • /
    • 2021
  • Recent development of deep learning techniques for image generation has led to straightforward generation of sophisticated deepfakes. However, as a result, privacy violations through deepfakes has also became increased. To solve this issue, a number of techniques for deepfake detection have been proposed, which are mainly focused on RGB channel-based analysis. Although existing studies have suggested the effectiveness of other color model-based analysis (i.e., Grayscale), their effectiveness has not been quantitatively validated yet. Thus, in this paper, we compare the effectiveness of Grayscale channel-based analysis with RGB channel-based analysis in deepfake detection. Based on the selected CNN-based models and deepfake datasets, we measured the performance of each color model-based analysis in terms of accuracy and time. The evaluation results confirmed that Grayscale channel-based analysis performs better than RGB-channel analysis in several cases.