• 제목/요약/키워드: CNN 모델

검색결과 822건 처리시간 0.031초

CNN 기반 악성코드 탐지에서 이미지 형식이 탐지성능과 자원 사용에 미치는 영향 분석 (Analysis of Effects of Image Format on Detection Performance and Resource Usage in CNN-Based Malware Detection)

  • 변성현;김영원;고관섭;이수진
    • 융합보안논문지
    • /
    • 제21권4호
    • /
    • pp.69-75
    • /
    • 2021
  • CNN 기반의 악성코드 탐지모델을 활용하기 위해 다양한 이미지 형식을 사용할 수 있다. 하지만 대부분의 기존 연구들은 최종적인 악성코드 탐지 및 분류 성능을 주로 강조하고 있으며, CNN에 입력되는 이미지의 형식이 모델의 성능과 자원 사용량에 미칠 수 있는 영향은 거의 고려하지 않는다. 이에 본 논문에서는 CNN을 기반으로 안드로이드 악성코드를 탐지하는 모델을 구축함에 있어 입력되는 이미지 형식이 탐지성능과 학습에 소요되는 자원의 사용량에 어떠한 영향을 미치는지를 분석하였다. CICAndMal2017 데이터세트를 사용하여 BMP, JPG, PNG 및 TIFF 4가지 형식의 이미지로 변환하고, 자체적으로 구축한 CNN 모델에 학습시킨 후 악성코드 탐지성능과 자원 사용량을 측정하였다. 그 결과 이미지 형식에 따른 이진분류 및 다중분류 성능과 GPU 및 RAM 사용량은 큰 차이를 보이지 않았다. 그러나 생성된 이미지의 파일 크기는 이미지 형식에 따라 최대 6배까지 차이가 났으며, 학습에 소요되는 시간에서도 유의미한 차이가 발생함을 확인하였다.

다중 클래스 이상치 탐지를 위한 계층 CNN의 효과적인 클래스 분할 방법 (Effective Classification Method of Hierarchical CNN for Multi-Class Outlier Detection)

  • 김지현;이세영;김예림;안서영;박새롬
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.81-84
    • /
    • 2022
  • 제조 산업에서의 이상치 검출은 생산품의 품질과 운영비용을 절감하기 위한 중요한 요소로 최근 딥러닝을 사용하여 자동화되고 있다. 이상치 검출을 위한 딥러닝 기법에는 CNN이 있으며, CNN을 계층적으로 구성할 경우 단일 CNN 모델에 비해 상대적으로 성능의 향상을 보일 수 있다는 것이 많은 선행 연구에서 나타났다. 이에 MVTec-AD 데이터셋을 이용하여 계층 CNN이 다중 클래스 이상치 판별 문제에 대해 효과적인지를 탐구하고자 하였다. 실험 결과 단일 CNN의 정확도는 0.7715, 계층 CNN의 정확도는 0.7838로 다중 클래스 이상치 판별 문제에 있어 계층 CNN 방식 접근이 다중 클래스 이상치 탐지 문제에서 알고리즘의 성능을 향상할 수 있음을 확인할 수 있었다. 계층 CNN은 모델과 파라미터의 개수와 리소스의 사용이 단일 CNN에 비하여 기하급수적으로 증가한다는 단점이 존재한다. 이에 계층 CNN의 장점을 유지하며 사용 리소스를 절약하고자 하였고 K-means, GMM, 계층적 클러스터링 알고리즘을 통해 제작한 새로운 클래스를 이용해 계층 CNN을 구성하여 각각 정확도 0.7930, 0.7891, 0.7936의 결과를 얻을 수 있었다. 이를 통해 Clustering 알고리즘을 사용하여 적절히 물체를 분류할 경우 물체에 따른 개별 상태 판단 모델을 제작하는 것과 비슷하거나 더 좋은 성능을 내며 리소스 사용을 줄일 수 있음을 확인할 수 있었다.

  • PDF

k-Nearest Neighbor와 Convolutional Neural Network에 의한 제재목 표면 옹이 종류의 화상 분류 (Visual Classification of Wood Knots Using k-Nearest Neighbor and Convolutional Neural Network)

  • Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권2호
    • /
    • pp.229-238
    • /
    • 2019
  • 목재의 결점은 생장과정에서 또는 가공 중에 다양한 형태로 발생한다. 따라서 목재를 이용하기 위해서는 목재의 결점을 정확하게 분류하여 용도에 맞는 목재 품질을 객관적으로 평가할 필요가 있다. 하지만 사람에 의한 등급구분과 수종구분은 주관적 판단에 의해 차이가 발생할 수 있기 때문에 목재 품질의 객관적 평가 및 목재 생산의 고속화를 위해서는 컴퓨터 비전을 활용한 화상분석 자동화가 필요하다. 본 연구에서는 SIFT+k-NN 모델과 CNN 모델을 통해 옹이의 종류를 자동으로 구분하는 모델을 구현하고 그 정확성을 분석해보고자 하였다. 이를 위하여 다섯 가지 국산 침엽수종으로부터 다양한 형태의 옹이 이미지 1,172개를 획득하여 학습 및 검증에 사용하였다. SIFT+k-NN 모델의 경우, SIFT 기술을 이용하여 옹이 이미지에서 특성을 추출한 뒤, k-NN을 이용하여 분류를 진행하였으며, 최대 60.53%의 정확도로 분류가 가능하였다. 이 때 k-index는 17이었다. CNN 모델의 경우, 8층의 convolution layer와 3층의 hidden layer로 구성되어있는 모델을 사용하였으며, 정확도의 최대값은 1205 epoch에서 88.09%로 나타나 SIFT+k-NN 모델보다 높은 결과를 보였다. 또한 옹이의 종류별 이미지 개수 차이가 큰 경우, SIFT+k-NN 모델은 비율이 높은 옹이 종류로 편향되어 학습되는 결과를 보였지만, CNN 모델은 이미지 개수의 차이에도 편향이 심하지 않아 옹이 분류에 있어 더 좋은 성능을 보였다. 본 연구 결과를 통해 CNN 모델을 이용한 목재 옹이의 분류는 실용가능성에 있어 충분한 정확도를 보이는 것으로 판단된다.

소프트맥스를 이용한 딥러닝 음악장르 자동구분 투표 시스템 (Deep Learning Music genre automatic classification voting system using Softmax)

  • 배준;김장영
    • 한국정보통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.27-32
    • /
    • 2019
  • 인간이 가진 뛰어난 능력 중의 하나인 곡 분류 과정을 딥러닝 알고리즘을 통해 구현하는 연구는 단일데이터를 이용한 유니모달 모델, 멀티모달 모델, 뮤직비디오를 이용한 멀티모달 방식 등이 있다. 이 연구에서는 곡의 스펙트로그램을 짧은 샘플들로 분할하여 각각을 CNN으로 분석한 뒤 그 결과를 투표하는 시스템을 제안하여 더 좋은 결과를 얻었다. 딥러닝 알고리즘 중 CNN이 RNN에 비해 음악 장르 구분에 있어 우수한 성능을 보였으며 CNN과 RNN을 같이 적용했을 때 성능이 좋아짐을 알 수 있었다. 음악샘플을 나누어 각각의 CNN 결과를 투표하는 시스템이 이전 모델에 비해 좋은 결과를 나타내었고 이 모델에 Softmax 레이어를 추가한 모델이 가장 좋은 성능을 보였다. 디지털 미디어의 폭발적인 성장과 수많은 스트리밍 서비스 속에서 음악장르의 자동분류에 대한 필요는 점점 증가하고 있는 추세이다. 향후 연구에서는 미분류 곡의 비율을 낮추고 최종적으로 미분류된 곡들의 장르구분에 대한 알고리즘을 개발할 필요가 있을 것이다.

이미지의 인지적 특징 정량화를 통한 CNN-ViT 하이브리드 미학 평가 모델 (CNN-ViT Hybrid Aesthetic Evaluation Model Based on Quantification of Cognitive Features in Images)

  • 김수은;임준식
    • 전기전자학회논문지
    • /
    • 제28권3호
    • /
    • pp.352-359
    • /
    • 2024
  • 본 논문에서는 이미지의 지역적 및 전역적 특징을 결합하여 이미지의 미학적 품질을 자동으로 평가할 수 있는 CNN-ViT 하이브리드 모델을 제안한다. 이 접근 방식에서는 CNN을 사용하여 색상 및 객체 배치와 같은 지역적 특징을 추출하고, ViT를 통해 전역적 특징을 반영하여 이미지의 미학적 가치를 분석한다. Color composition은 입력 이미지에서 주요 색상을 추출해 생성한 컬러 팔레트를 CNN에 통과시켜 얻은 값이며, Rule of Third는 이미지 속 오브젝트가 삼등분할점에 얼마나 근접한지를 정량적으로 평가한 점수로 사용된다. 이러한 값들은 모델에 이미지의 주요 평가 요소인 색채와 공간 균형에 대한 정보를 제공한다. 모델은 이를 바탕으로 이미지의 점수와 색상, 공간의 균형 간에 연관성을 분석하며, 인간의 평가 분포와 유사한 점수를 추측하도록 설계되었다. 실험 결과, AADB 이미지 데이터베이스에서 스피어만순위상관계수(SRCC)에서는 0.716을 기록하여 순위 예측에서 더 일관된 결과를 제공 했으며, 피어슨상관계수(LCC)에서도 0.72을 기록하여 기존 연구 모델보다 2~4% 정도 향상된 결과를 보였다.

CCTV를 이용한 터널내 사고감지 시스템 (Accident Detection System in Tunnel using CCTV)

  • 이세훈;이승엽;노영훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.3-4
    • /
    • 2021
  • 폐쇄된 터널 내부에서는 사고가 일어날 경우 외부에서는 터널 내 상황을 알 수가 없어 경미한 사고라 하더라도 대형 후속 2차 사고로 이어질 가능성이 크다. 또한영상탐지로사고 상황의 오검출을 줄이기 위해서, 본 연구에서는기존의 많은 CNN 모델 중 보유한 데이터에 가장 적합한 모델을 선택하는 과정에서 가장 좋은 성능을 보인 VGG16 모델을 전이학습 시키고 fully connected layer의 일부 layer에 Dropout을 적용시켜 Overfitting을일부방지하는 CNN 모델을 생성한 뒤Yolo를 이용한 영상 내 객체인식, OpenCV를 이용한 영상 프레임 내에서 객체의ROI를 추출하고이를 CNN 모델과 비교하여오검출을 줄이면서 사고를 검출하는 시스템을 제안하였다.

  • PDF

3 차원 수용영역 구조의 CNN 모델을 이용한 동적 수신호 인식 기법 (Dynamic Hand Gesture Recognition Using a CNN Model with 3D Receptive Fields)

  • 박진희;이조셉;김호준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.459-462
    • /
    • 2007
  • 본 연구에서는 동적 수신호 인식문제를 위하여 CNN 모델을 사용한 특징추출 기법과, FMM 신경망을 사용한 특징 분석 기법을 상호 결합한 형태의 패턴 인식 모델을 제안한다. 수신호 인식을 위하여 영상패턴에서 대상물의 움직임 정보에 기초한 3 차원 형식의 데이터 표현 기법과, 이로부터 인식을 위한 특징추출 기법을 제시한다. 특징추출 모듈에서는 3 차원으로 확장된 구조의 수용영역을 고려한 CNN 모델을 제안하며, 이로부터 학습패턴에서 특징점의 공간적 변이에 대한 영향을 최소화할 수 있음을 고찰한다. 또한 인식효율의 개선을 위하여 방대한 양의 특징집합으로부터 효과적인 특징을 선별하기 위한 방법론으로서 WFMM 모델 기반의 특징분석 기법을 정의하고 이로부터 선별된 특징을 사용하는 인식 기법을 소개한다.

Mask R-CNN 과 zi2zi 모델을 활용하여 탐지된 객체의 스타일을 변환시키는 신경망 모델 (Neural network model for detected object style transformation using Mask R-CNN and zi2zi)

  • 조인수;최동빈;박용범
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.562-565
    • /
    • 2021
  • 스타일 변환 모델은 이미지 전체나 이미지 내에서 사용자가 지정한 영역을 대상으로 스타일을 변환시킨다. 이런 방식은 이미지 내의 다수의 객체에 대해 스타일 변환을 시행할 때 일일이 영역을 지정해 줘야 한다는 불편함과 결과물의 전체 해상도가 떨어진다는 한계를 가지고 있다. 본 논문에서는 이런 한계들을 극복하기 위해 객체탐지 모델과 스타일변환 모델을 연동한 객체스타일변환모델을 제안하고 모델 간 연동방법에 대해 자세히 서술한다. 객체탐지모델인 Mask R-CNN 을 통해 필요한 객체를 탐지하고 탐지한 객체의 특징맵들을 스타일변환 모델인 zi2zi 의 입력 값으로 전달하여 이미지 내의 필요한 객체들만 스타일변환이 이루어지도록 모델이 동작한다. 이러한 모델은 기존에 있는 두 모델을 재사용함으로써 모델을 처음부터 새로 설계할 필요가 없다는 장점이 있으며, 공개된 다양한 모델들을 서로 융합하여 사용할 수 있는 방법을 제시하는데 도움을 줄 것이다.

앙상블 딥러닝을 이용한 초음파 영상의 간병변증 분류 알고리즘 (Classification Algorithm for Liver Lesions of Ultrasound Images using Ensemble Deep Learning)

  • 조영복
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.101-106
    • /
    • 2020
  • 현재 의료 현장에서 초음파 진단은 과거 청진기와 같다고 할 수 있다. 그러나 초음파의 특성상 검사자의 숙련도에 따라 결과 예측이 불확실하다는 단점을 가진다. 따라서 본 논문에서는 이런 문제를 해결하기 위해 딥러닝 기술을 기반으로 초음파 검사 중 간병변 탐지의 정확도를 높이고자 한다. 제안 논문에서는 CNN 모델과 앙상블 모델을 이용해 병변 분류의 정확도 비교 실험하였다. 실험결과 CNN 모델에서 분류 정확도는 평균 82.33%에서 앙상블모델의 경우 평균 89.9%로 약 7% 높은 것을 확인하였다. 또한 앙상블 모델이 평균 ROC커브에서도 0.97로 CNN모델보다 약 0.4정도 높은 것을 확인하였다.

CNN-LSTM 혼합모델을 이용한 비행상태 예측 기법 (Flight State Prediction Techniques Using a Hybrid CNN-LSTM Model)

  • 박진상;송민재;최은주;김병수;문용호
    • 항공우주시스템공학회지
    • /
    • 제16권4호
    • /
    • pp.45-52
    • /
    • 2022
  • 최근 차세대 운송시스템으로 주목받고 있는 UAM 분야에서 무인항공기 활용을 위한 기술 개발이 활발히 진행되고 있다. 이러한 기술이 적용된 무인항공기는 주로 도심에서 운용되기 때문에 추락사고를 예방하는 것이 중요하다. 그러나 충돌이 발생되는 무인항공기는 비선형성이 강하기 때문에 비정상 비행상태를 예측하는 것은 쉽지 않은 일이다. 본 논문에서는 CNN-LSTM 혼합모델을 이용하여 무인항공기의 비행상태를 예측하는 방법을 제안한다. 제안 모델은 비행 데이터간의 시간적, 공간적 특징을 추출하는 CNN 모델과 추출된 특징의 장단기 시간 의존성을 추출하는 LSTM 모델을 결합하여 미래의 특정 시점에서 비행 상태변수를 예측한다. 모의 실험은 제안하는 방법이 기존 인공신경망 모델에 기반한 예측 방법보다 우수한 성능을 보인다.