Analysis of Effects of Image Format on Detection Performance and Resource Usage in CNN-Based Malware Detection |
Seong-hyeon Byeon
(국방대학교 국방과학학과)
Young-won Kim (국방대학교 국방과학학과) Kwan-seob Ko (국방대학교 국방과학학과) Soo-jin Lee (국방대학교 국방과학학과) |
1 | Canadian Institute for Cybersecurity, https://www.unb.ca/cic/datasets/andmal2017 |
2 | A. H. Lashkari, A. F. A. Kadir, L. Taheri and A. A. Ghorbani. "Toward Developing a Systematic Approach to Generate Benchmark Android malware Datasets and Classification." 2018 International Carnahan Conference on Security Technology (ICCST), pp. 1-7, 2018. |
3 | S. Fallah and A. J. Bidgoly. "Benchmarking machine learning algorithms for android malware detection." Jordanian Journal of Computers and Information Technology (JJCIT), pp. 216-230. 2019. |
4 | Jinwon Kang, Soojin Lee, "Android Malware Detection Through the Conversion of Network Traffic to Images." The Korean Institute of Information Scientists and Engineers, vol. 47, pp. 761-768, 2020. |
5 | E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, "MalDozer: Automatic Framework for Android Malware Detection Using Deep Learning." Digital Investigation, vol. 24, pp.S48-S59, Mar.2018. |
6 | Y. Kim, "Convolutional Neural Networks for Sentence Classification." Proc. of the Empirical Methods in Natural Language Processing, pp. 1746-1751, 2014. |
7 | X. Su, D. Zhang, W. Li and K. Zhao, "A Deep Learning Approach to Android Malware Feature Learning and Detection." 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 244-251, Tianjin, 2016. |
8 | Z. Ma, H. Ge, Y. Liu, M. Zhao and J. Ma, "A Combination Method for Android Malware Detection Based on Control Flow Graphs and Machine Learning Algorithms." in IEEE Access, 7, pp.21235-21245, 2019. |
9 | Amin M., Tanveer T.A., Tehseen M., Khan M. and Khan F.A., "Anwar, S. Static Malware Detection and Attribution in Android Byte-code through an End-to-end Deep System." Future Gen. Comput. Syst. 102, pp. 112-126. 2020. |
10 | H. Han, S. Lim, K. Suh, S. Park, S. Cho and M. Park, "Enhanced Android Malware Detection: An SVM-Based Machine Learning Approach." 2020 IEEE International Conference on Big Data and Smart Computing(BigComp), pp. 75-81, Busan, Korea (South), 2020. |