• Title/Summary/Keyword: CNG fuel

Search Result 164, Processing Time 0.028 seconds

Applicability of Fuel Supply System for HCNG Engine (HCNG 엔진용 연료시스템의 적용성 평가)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi;Lee, Janghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.146-153
    • /
    • 2013
  • CNG buses has contributed to improve air quality in cities. But it is difficult to meet the next emission regulations such as EURO-VI without the help of additional post-processing device. Hydorgen has higher flame speed and lower combustion temperature that make it thermal efficiency increase with leaner operation. Using hydrogen natural gas blend (HCNG) fuel is promising technology which can reduce $NO_x$ and $CO_2$ emissions for a natural gas vehicle. However, fuel flow rate of HCNG should be increased since hydrogen's energy density per volume is much smaller than natural gas. In the present study, the characteristics of fuel supply system and its applicability were evaluated in a heavy duty natural gas engine. The results showed that the potential of fuel pressure regulator and fuel metering valve had enough capacity with HCNG. Employed mixer did not affect the distribution characteristics of mixture.

Process Simulation of HCNG Refueling System (HCNG 충전 시스템 공정모사)

  • Kim, Sang-Min;Han, Jeong-Ok;Lee, Yeong-Cheol;Lee, Joong-Seong;Kim, Yong-Cheol;Chae, Jeong-Min;Hong, Seong-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.1-7
    • /
    • 2013
  • In this study, simulation work of HCNG refueling system was performed. The hydrogen was produced from steam reforming process by natural gas. The conversion of natural gas is increased as SCR is increased. but it was no significant difference more than 3 of SCR and fuel throughput is increased as GHSV is increased. Both conversion and fuel throughput levels was optimized when the $1700h^{-1}$ of GHSV. CNG was compressed from low pressure natural gas. For the mixing of $H_2$ and CNG is mixed with the high pressure conditions such as 400bar of $H_2$ and 250bar of natural gas. Single-stage compression was required more power than multi stage. So, multi stage compression was suggested for high pressure compression. We calculated the intermediate pressure to minimize total required power of compressors. The intermediate pressure for $H_2$ and natural gas were derived at 61 and 65 bar, respectively.

Damage Evaluation for High Pressure Fuel Tank by Analysis of AE Parameters (고압가스 연료탱크의 손상평가를 위한 음향방출 변수의 분석)

  • Jee, Hyun-Sup;Lee, Jong-O;Ju, No-Hoe;Lee, Jong-Kyu;So, Cheal-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.36-40
    • /
    • 2011
  • This paper described analysis of acoustic emission parameter for the damage evaluation of type II vehicle fuel tank during fracture test. The observation of Kaiser effect, Felicity effect and creep effect is the means of damage evaluation method. It is possible to evaluate tank damage by the ratio of hit of over 60 dB and total hit. Damage mechanism of pressure tank can be estimated by analysis of average rise time, average amplitude.

Sloshing Reduction Characteristics to Baffle for Cylindrical Liquefied Fuel Tank subject to Dynamic Load (동하중을 받는 원통형 액화연료 탱크의 배플에 따른 슬로싱 저감 특성)

  • Koo, Jun-Hyo;Cho, Jin-Rae;Jeong, Weui-Bong;Kim, Dang-Ju
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.950-959
    • /
    • 2009
  • Liquid fluctuation called sloshing within liquid-storage tank gives rise to the significant effect on the dynamic stability of tank. This liquid sloshing can be effectively suppressed by installing baffles within the tank, and the suppression effect depends strongly on the design parameters of baffle like the baffle configuration. The present study is concerned with the parametric evaluation of the sloshing suppression effect for the CNG-storage tank, a next generation liquefied fuel for vehicles, to the major design parameters of baffle, such as the baffle configuration, the installation angle and height, the hole size of baffle. The coupled FEM-FVM analysis was employed to effectively reflect the interaction between the interior liquid flow and the tank elastic deformation.

Effect of Fuel Injector-type Spark Plug on Combustion Characteristics

  • Yeom, J.K.;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.171-177
    • /
    • 2009
  • This study proposes a new stratified charge system for low emission and ultra lean burn. In order to examine combustion characteristics of the new system, sparkplug with a hole at positive pole and a common CNG injector for injecting fuel were used in this study as injector-type spark plug. The new stratified charge system injects fuel of extremely small quantities and ignites mixture around sparkplug gap. Also, the system was fitted in a visualized constant volume chamber. Then, for analysis of the combustion characteristics, we examined combustion pressure, lean inflammable limit, and visualized combustion flame according to equivalence ratio by comparison with homogeneous charge (HC) method and the new stratified charge (SC) method. As results of this study, in the case of using this system, the propagation speed of initial flame was increased and total combustion period was reduced in the ultra lean burn in the same equivalence ratio. These phenomena occurred clearly under the conditions of lean equivalence ratio. Furthermore, the lean inflammable limit of mixture was extended by using the injector-type spark plug.

  • PDF

Simultaneous Reduction of CH4 and NOx of NGOC/LNT Catalysts for CNG buses (CNG 버스용 NGOC/LNT 촉매의 CH4와 NOx의 동시 저감)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.167-175
    • /
    • 2018
  • Natural gas is a clean fuel that discharges almost no air-contaminating substances. This study examined the simultaneous reduction of $CH_4$ and NOx of NGOC/LNT catalysts for CNG buses related to the improvement of the $de-CH_4/NOx$ performance, focusing mainly on identifying the additive catalysts, loading of the washcoat, stirring time, and types of substrates. The 3wt. % Ni-loaded NGOC generally exhibited superior $CH_4$ reduction performance through $CH_4$ conversion, because Ni is an alkaline, toxic oxide, and exerts a reducing effect on $CH_4$. A excessively small loading resulted in insufficient adsorption capacity of harmful gases, whereasa too high loading of washcoat caused clogging of the substrate cells. In addition, with the economic feasibility of catalysts considered, the appropriate amount of catalyst washcoat loading was estimated to be 124g/L. The NOx conversion rate of the NGOC/LNT catalysts stirred from $200^{\circ}C$ to $550^{\circ}C$ for 5 hours showed 10-15% better performance than the NGOC/LNT catalysts mixed for 2 hours over the entire temperature range. The NGOC/LNT catalysts exhibitedapproximately 20% higher $de-CH_4$ performance on the ceramic substrates than on the metal substrates.

Development of High Flow MPI Gas Injector for Heavy Duty Natural Gas Engine (대형 천연가스 엔진의 고유량 MPI 분사기 개발)

  • Lee, Seok-Hwan;Lee, Jin-Wook;Jee, Kang-Hoon;Choi, Min-Ho;Roh, Yun-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2009
  • Natural gas is the world's most plentiful combustible fuel, abundantly acailable in all continent. A fuel injector designed specifically for low energy density gaseous fuels has been developed. The injector incorporates design features that are necessary to optimize the performance for fuels such as CNG, LNG. Gaseous fuel injectors have a decisive influence upon starting performance, driveability, fuel consumption and exhaust emissions. A gaseous fuel injector has been developed to cope with the considerably larger volume flow rates and the developed gaseous fuel injector could be used at heavy duty natural gas engine. The static flow of injectors at various inlet pressure was directly proportional and the controllability showed great performance.

  • PDF

Influence of Piston Bowl Geometry on Combustion of a Diesel/CNG Reactivity Controlled Compression Ignition Engine (디젤/천연가스 반응성제어 압축착화 엔진에서 피스톤 형상에 따른 연소 특성)

  • Kim, Hyunsoo;Kim, Wooyeong;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.57-66
    • /
    • 2021
  • The reactivity controlled compression ignition (RCCI) is the technology that provides two different types of fuel to the combustion chamber with the advantage of significantly reducing particulate matter and nitrogen oxides emissions. However, due to the characteristics of lean combustion, combustion efficiency is worsened. The conventional type of pistons for conventional diesel combustion (CDC) has mostly been used in the researches on RCCI. Because the pistons for CDC are optimized to enhance flow and target spray, the pistons are unsuitable for RCCI. In this study, a piston that is suitable for RCCI is designed to improve combustion efficiency. The new piston was designed by considering the factors such as squish geometry, bowl depth, and surface area. The experiment was carried out by fixing the energy supply to 0.9kJ/cycle and 1.5kJ/cycle respectively. The two pistons were quantitatively compared in terms of thermal efficiency and combustion efficiency.

An Experimental Study on the Flashback and Re-ignition Structure with a V-gutter type Flameholder (V-gutter형 보염기에서 발생하는 화염의 역화 및 재점화 구조에 관한 실험적 연구)

  • Jeong, Chan-Yeong;Kim, Tae-Sung;Song, Jin-Kwan;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.603-607
    • /
    • 2011
  • Structure of flashback and reignition occurring near flameholder was experimentally investigated in a model combustor with V-gutter flameholder. The combustor has a long duct shape with cross section of $40{\times}40mm$ and City Nature Gas(CNG) were used as fuel. Measurements of chemiluminescence with high speed camera was used for visualization of flame structure. In the lean case, flashback distance depend on equivalent ratio. New flame occurred at the front tip of flameholder when flashback. Flashback flame moved toward downstream direction of combustor because mixture flow velocity had increased, and then re-ignition was caused by entering flow into recirculation zone that is formed behind the flameholder.

  • PDF

Analysis of the Efficiency of Urban Bus Companies in Seoul Considering Accident and Emission Costs (Using a Directional Distance Function) (사고 및 대기오염 비용을 고려한 서울 시내버스업체의 효율성 분석 (방향거리함수를 이용하여))

  • O, Mi-Yeong;Kim, Seong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.157-166
    • /
    • 2010
  • The aim of this paper was to estimate efficiency using a directional distance function to compare performances of bus agencies to determine if they have made efforts to operate efficiently and reduce emissions and accidents since public transportation reforms 2004. Drivers, mechanics, staff, buses, and fuel were used as input data and vehicle-kilometers (a desirable output), accident costs, and emission costs (undesirable outputs) as output data during June 2005. As a result, the efficiency with undesirable outputs was lower than the efficiency without undesirable outputs. However, the number of efficient agencies was more in case of the consideration of undesirable outputs. The reason is that the number of agencies whose possibility to reduce undesirable outputs are less than the possibility to reduce inputs was increasing, while the efficiency deviation among agencies was larger in case of the consideration of undesirable outputs. Meanwhile, the increase of CNG buses and operating speed and the improvement of mechanical efficiency had positive influence on the efficiency.