• Title/Summary/Keyword: CNG fuel

Search Result 163, Processing Time 0.025 seconds

Study on Performance and Emission Characteristics of CNG/Diesel Dual-Fuel Engine (CNG/Diesel 이종연료용 엔진의 성능 및 배출가스 특성에 대한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.869-874
    • /
    • 2011
  • In a CNG/diesel dual-fuel engine, CNG is used as the main fuel and a small amount of diesel is injected into the cylinder to provide ignition priming. In this study, a remodeling of the existing diesel engine into a CNG/diesel dual-fuel engine is proposed. In this engine, diesel is injected at a high pressure by common rail direct injection (CRDI) and CNG is injected at the intake port for premixing. The CNG/diesel dual-fuel engine had an equally satisfactory coordinate torque and power as the conventional diesel engine. Moreover, the CNG alternation rate is over 89% throughout the operating range of the CNG/diesel dual-fuel engine. PM emission by the dual-fuel engine is 94% lower than that by the diesel engine; however, NOx emission by the dual-fuel engine is higher than that by the diesel engine.

The Engine Performance and Emission Characteristics of CNG/Diesel Dual-fuel Engine by CNG Mixing Ratio (CNG/Diesel Dual-fuel 엔진의 CNG 혼합율에 따른 엔진성능 및 배출가스 특성에 관한 연구)

  • Choi, Gun-Ho;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.38-43
    • /
    • 2011
  • A CNG/diesel dual-fuel engine uses CNG as the main fuel and injects a small amount of diesel as an ignition priming. This study proposed the modification of the existing diesel engine into a dual-fuel engine that injects diesel with a high pressure by common rail direct injection (CRDI) and by injecting CNG at the intake port for premixing. And experiment was progressed for understanding about effect of CNG mixing ratio. The CNG/diesel dual-fuel engine showed equally satisfactory coordinate torque and power regardless of CNG mixing ratio. The PM emission was low at any CNG mixing ratio because of very small diesel pilot injection. In case of NOx and HC, high CNG mixing ratio showed low NOx and HC emissions at low speed. At medium & high speed, low CNG mixing ratio showed low NOx and HC emissions. Therefore, it would be optimized by controlling CNG mixing ratio.

Exhaust Emissions Characteristics of Bi-fuel CNG/LPG Passenger Cars (CNG/LPG Bi-fuel 승용차의 배출가스 특성)

  • Cho, Chong-Pyo;Lee, Young-Jae;Kim, Gang-Chul;Kwon, Oh-Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.142-147
    • /
    • 2011
  • Compressed natural gas (CNG) is well known as one of the cleanest burning alternative fuels. Bi-fuel CNG vehicle can also run on gasoline or another fuel while dedicated natural gas vehicle is designed to run on natural gas only. Recently, increased attention has been focused on bi-fuel CNG/LPG taxi because of good fuel economy of CNG. A number of LPG taxis modified to CNG Bi-fuel vehicles are running in many cities. In this paper, the emissions characteristics of in-use passenger cars running on CNG and LPG were investigated. Chassis dynamometer test was used to measure exhaust emissions from an in-use fleet of 5 cars. Exhaust emissions were collected for CVS-75 driving mode. The test results showed that for CNG fuel mode, CO, $CO_2$ and NMHC emissions decreased to 9%, 12% and 14% respectively, and $CH_4$ and $NO_x$ emissions increased to 317% and 47% respectively.

Fuel Efficiency and $CO_2$ Emission Characteristics on Driving Cycle Mode and Ignition Advance Condition Change of CNG/LPLI Bi-Fuel Vehicle (CNG/LPLI Bi-Fuel 자동차에서 주행시험 모드와 점화진각에 따른 연비 및 $CO_2$ 배출가스 특성)

  • Cho, Seungwan;Kim, Seonghoon;Kwon, Seokjoo;Park, Sungwook;Jeon, Chunghwan;Seo, Youngho
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • Due to persist of high oil prices, LPG price stabilization and CNG modification project will be conducted. Present study describes the fuel efficiency and $CO_2$ emission characteristics on driving cycle mode and ignition advance condition change of CNG/LPG Bi-Fuel vehicle. In case of LPG Base and CNG Base condition, considerable $CO_2$ emissions are generated within range of high acceleration on FTP-75 and HWFET driving mode. However previous phenomena does not appear in CNG fuel $10^{\circ}CA$ and $15^{\circ}CA$ spark advance condition. As a result of analyzing the experimental data CNG $S/A10^{\circ}CA$, CNG $S/A15^{\circ}CA$, CNG Base, and LPG Base sequentially measured high fuel economy and low $CO_2$ emission characteristics.

Effects of Pilot Injection Quantity on the Combustion and Emissions Characteristics in a Diesel Engine using Biodiesel-CNG Dual Fuel (바이오디젤-CNG 혼소엔진에서 파일럿 분사량이 연소 및 배기 특성에 미치는 영향)

  • Ryu, Kyunghyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • The effect of pilot injection quantity on the combustion and emissions characteristics of a compression ignition engine with a biodiesel-compressed natural gas (CNG) dual fuel combustion (DFC) system is studied in this work. Biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC. The pilot injection quantity is controlled to investigate the characteristics of combustion and exhaust emissions in a single cylinder diesel engine. The injection pressure and injection timing of pilot fuel are maintained at approximately 120 MPa and BTDC 17 crank angle, respectively. Results show that the indicated mean effective pressure (IMEP) of biodiesel-CNG DFC mode is similar to that of diesel-CNG DFC mode at all load conditions. Combustion stability of biodiesel-CNG DFC mode decreased with increase of engine load, but no notable trend of cycle-to-cycle variations with increase of pilot injection quantity is discovered. The combustion of biodiesel-CNG begins at a retarded crank angle compared to that of diesel-CNG at low load, but it is advanced at high loads. Smoke and NOx of biodiesel-CNG are simultaneously increased with the increase of pilot fuel quantity. Compared to the diesel-CNG DFC, however, smoke and NOx emissions are slightly reduced over all operating conditions. Biodiesel-CNG DFC yields higher $CO_2$ emissions compared to diesel-CNG DFC over all engine conditions. CO and HC emissions for biodiesel-CNG DFC is decreased with the increase of pilot injection quantity.

A Study on Energy Consumption Rate Measurement and Calculation Procedures of Domestric CNG Gaseous Fueled Vehicle (국내 CNG 가스연료 자동차의 에너지소비효율 측정 및 계산절차에 관한 연구)

  • Seo, Youngho;Kwon, Seokjoo;Kang, Eunjeong
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.57-60
    • /
    • 2013
  • The purpose of this study is to analysis of how to calculate fuel efficiency in major development countries (U.S. and Europe) and energy consumption formular derivation of domestic CNG fuel and prove by vehicle test. The formula of fuel consumption is different in mpg(mile per gallon), l/100km, and km/l each countries. CNG fuel has a significant impact on fuel density, composition, and Hydro-Carbon ratio. So, this study how to measurement and calculation procedures of CNG gaseous fueled vehicle energy consumption rate.

  • PDF

Effects of CNG Heating Value on Combustion Characteristics of a Diesel-CNG Dual-Fuel Engine (디젤-CNG 혼소엔진에서 CNG 발열량 변화가 연소 특성에 미치는 영향)

  • Kim, Yongrae;Jang, Hyeongjun;Lee, Janghee;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.28-33
    • /
    • 2015
  • In this study, a dual fuel engine fueled with natural gas and diesel was tested to investigate the effects of heating value variation of CNG fuel. CNG substitution rate which is defined as the ratio of CNG and diesel supplied in a heating value basis was fixed at 80%. The higher heating value was varied from $10,400kcal/Nm^3$ to $9,400kcal/Nm^3$ by mixing nitrogen gas with pure CNG and diesel fuel was injected at a fixed injection timing. The engine test results showed that thermal efficiency and power output were decreased as the heating value of mixed CNG fuel was decreased. And the peak cylinder pressure was also decreased but the ignition delay time and the combustion duration and timing were almost same.

The Effect of Fuel Composition on Emissions and Combustion of CNG Engine at Partial Load (부분부하에서 연료 조성이 천연가스 엔진의 연소 및 배기에 미치는 영향)

  • Kim, Hyung-Min;Lee, Ki-Hyung;Kim, Bong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3288-3293
    • /
    • 2007
  • Compressed natural gas has good potential for alternative vehicle fuel due to its economical and clean characteristics. However, the composition of natural gas based on production location is known to affect performance and emissions of CNG engine. Thus, the objective of this paper is to clarify the effect of fuel composition on combustion and emissions of CNG engine. This paper presents combustion characteristics obtained from running a 2.5L, 4-cylinder CNG engine retrofitted IDI diesel engine with engine dynamometer. BSFC, emissions, fuel consumption and combustion pressure were measured under steady state operating conditions especially at partial load for CNG engine. Based on the experimental results, we found that CNG composition affects engine performance, fuel conversion efficiency and burning rate.

  • PDF

A Development of Converting Technology for the Marine Gasoline/CNG Bi-fuel Engine (선박용 가솔린/CNG Bi-fuel 엔진개조 기술 개발)

  • Park, Myung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.632-637
    • /
    • 2010
  • Natural gas, a fossil fuel contained mostly of methane, is one of the cleanest alternative fuels. It can be used in the form of compressed gas(CNG) or liquefied natural gas(LNG) to cars and trucks. And, dedicated natural gas vehicles are designed to run on natural gas only, while Bi-fuel vehicles can also run on gasoline or CNG, especially, bi-fuel can be defined as the simultaneous combustion of two fuels. In this study, converted gasoline marine system to CNG Bi-fuel system which is made up of injector, regulator, tank and ECU is converted. And estimated the fuel system and engine power compared the result with gasoline engine is estimated. As a result, CNG engine shows low exhaust emissions but maxium power is 7% reduced compared to gasoline engine.

LPG/CNG Interface Box Hardware Design (LPG/CNG Interface Box 제품 Hardware 설계)

  • An, Jeong-Hoon;Jung, Jae-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.23-29
    • /
    • 2007
  • In Korea, the number of LPG vehicles is increasing continuously because LPG is cheaper than Gasoline. Also in Europe, the CNG fuel is a good solution to meet $CO_2$ regulation. In order to use LPG/CNG fuel, new EMS ECU must be developed for every type of vehicles and it requires huge development cost. In order to reduce development cost and time, SIEMENS VDO has developed an Interface Box. It supports EMS ECU in the car and manages LPG/CNG fuel injection system. Basically the Interface box can be used with any kind of EMS ECU. The Interface Box controls LPG/CNG injector through the injection command of gasoline EMS ECU. It calculates required amount of based on the fuel temperature and pressure and sends feedback signal to ECU for fuel correction. Also, it controls LPG/CNG specific actuator such a Shut off valves and LPG switch inputs.