• Title/Summary/Keyword: CNG composite vessel

Search Result 17, Processing Time 0.02 seconds

Forensic Engineering Study on Assessment of Damage to Pressure Vessel Because of CNG Vehicle Explosion (CNG 차량 폭발의 용기 손상 평가에 관한 법공학적 연구)

  • Kim, Eui-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.439-445
    • /
    • 2011
  • Forensic Engineering is the art and science of professionals qualified to serve as engineering experts in courts of law or in arbitration proceedings. Buses using compressed natural gas (CNG) trend to be extended in use internationally as optimal counterplan for reducing discharge gas of light oil due to high concern about environment. However, CNG buses have to be equipped with composite pressure vessels (CPVs); since the CPVs contain compressed natural gas, the risks in the case of accident is very high. Hence, the investigation of such accidents is usually associated with engineering analysis. Among the possible reasons for such CNG explosion accidents is vehicle fire and vessel fracture. By conducting formal inspection and engineering tests, in this study, the cause of vessel explosion is investigated by analyzing the failure mechanism by fractography and by comparing the material properties of a reference part with those of a problem part by adopting instrumented indentation technique.

Prototype Product Based on the Functional Test of ANG Fuel Vessel Applied to Composite Carbon Fiber (탄소섬유 복합재료를 적용한 ANG 연료용기의 시제작 및 성능평가)

  • Kim, Gun-Hoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • Recently, an automobile market used to natural gas has emerged as fast-growing as the several countries, who holds abundant natural fuel resources, has promoted to supply the national agency for an automobile car. LNG fuel vessel is more efficient in another way as the energy density is high, but it requires a high technology and investment to maintain extreme low temperature. CNG fuel vessel are relatively low-cost alternative to LNG, but poorly economical in terms of energy density as well as showing safety issues associated with compressed pressure. The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. Therefore, it is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to the regulation of $CO_2$ emission. Herein, this study make the prototype ANG vessel not only based on the optimal design and analysis of material characteristic but also based on the shape design, and it suggest a new type for the composite carbon fiber vessel which verified functional test. Moreover, the detail shape design is analyzed by a finite element analysis, and its verifies the ANG vessel.

A Study on Filament Winding Process of A CNG Composite Pressure vessel (CNG 복합용기의 필라멘트 와인딩 공정에 관한 연구)

  • Kim, C.;Kim, E. S.;Kim, J. H.;Choi, J. C.;Park, Y. S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.656-660
    • /
    • 2002
  • The fiber reinforced composite material is widely used in the multi-industrial field where the weight reduction of the infrastructure is demanded because of their high specific modulus and specific strength. Pressure vessels using this composite material in comparison with conventional metal vessels can be applied in the field where lightweight and the high pressure is demanded from the defense and aerospace industry to rocket motor case due to the merits which are energy curtailment by the weight reduction and decrease of explosive damage precede to the sudden explosion which is generated by the pressure leakage condition. In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding composite pressure vessel receiving an internal pressure, the standard interpretation model is developed by using the ANSYS 5.7.1, the general commercial program, which is verified as the accuracy and useful characteristic of the solution based on Auto LISP and ANSYS APDL. Both the preprocessor for doing exclusive analysis of filament winding composite pressure vessel and postprocessor that simplifies result of analysis have been developed to help the design engineers.

  • PDF

A Study on filament Winding Process of A CNG Composite Pressure Vessel (필라멘트 와인딩 압력용기의 최적설계와 CNG자동차 연료 충진용기 개발)

  • Kim, Eui-Soo;Kim, Ji-Hoon;Park, Yoon-So;Kim, Chul;Choi, Jae-Chan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.933-937
    • /
    • 2002
  • The fiber reinforced composite material is widely used in the multi-industrial field where the weight reduction of the infrastructure is demanded because of their high specific modulus and specific strength. Pressure vessels using this composite material in comparison with conventional metal vessels can be applied in the field where lightweight and the high pressure are demanded from the defense and aerospace industry to rocket motor case due to the merits which are energy cutdown the weight reduction and decrease of explosive damage preceding to the sudden explosion which is generated by the pressure leakage condition). In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding composite pressure vessel receiving an internal pressure, the standard interpretation model is developed by using the ANSYS, general commercial software, which is verified as the accuracy and useful characteristic of the solution based on Auto LISP and ANSYS APDL. Both the preprocessor for doing exclusive analysis of filament winding composite pressure vessel and postprocessor that simplifies result of analysis have been developed to help the design engineers.

  • PDF

An Integrated CAD/CAM System for CNG Pressure Vessel Manufactured by Deep Drawing and Ironing Operation

  • Park, Joon-Hong;Kim, Chul;Park, Jae-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.904-914
    • /
    • 2004
  • The fiber reinforced composite material is widely used in the multi-industrial field because of their high specific modulus and specific strength. It has two main merits which are to cut down energy by reducing weight and to prevent explosive damage proceeding to the sudden bursting which is generated by the pressure leakage condition. Therefore, Pressure vessels using this composite material can be applied in the field such as defence industry and aerospace industry. In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding of composite vessel subjected to internal pressure, the standard interpretation model is developed by using the ANSYS with AutoLISP and ANSYS APDL languages, general commercial software, which is verified as useful characteristic of the solution. Among the modules of the system, both the process planning module for carrying out the process planning of filament wound composite pressure vessel and the autofrettage process module for obtaining higher residual stress will minimize trial and error and reduce the period for developing new products. The system can serve as a valuable system for experts and as a dependable training aid for beginners.

A Study on Analysis Method to Evaluate Influence of Damage on Composite Layer in Type3 Composite Cylinder (Type3 복합재료 압력용기의 복합재층 손상에 따른 영향성 평가를 위한 해석기법에 관한 연구)

  • Lee, Kyo-Min;Park, Ji-Sang;Lee, Hak-Gu;Kim, Yeong-Seop
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.7-13
    • /
    • 2010
  • Type3 cylinder is a composite pressure vessel fully over-wrapped with carbon/epoxy composite layers over an aluminum liner, which is the most ideal and safe high pressure gas container for CNG vehicles due to the lightweight and the leakage-before-burst characteristics. During service in CNG vehicle, if a fiber cut damage occurs in outer composite layers, it can degrade structural performance, reducing cycling life from the original design life. In this study, finite element modeling and analysis technique for the composite cylinder with fiber-cut crack damage is presented. Because FE analysis of type3 cylinder is path dependant due to plastic deformation of aluminum liner in autofrettage process, method to introduce a crack into FE model affect analysis result. A crack should be introduced after autofrettage in analysis step considering real circumstances where crack occurs during usage in service. For realistic simulation of this situation, FE modeling and analysis technique introducing a crack in the middle of analysis step is presented and the results are compared with usual FE analysis which has initial crack in the model from the beginning of analysis. Proposed analysis technique can be used effectively in the evaluation of influence of damage on composite layers of type3 cylinder and establish inspection criteria of composite cylinder in service.

A Study on the Preocessing of high Runctional Composites and the Evaluation of Its Characteristics (고기능성 복합재료의 제조와 그 특성평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.139-145
    • /
    • 1998
  • Filament winding method is widely used for composite fabrications using low viscosity liquid for-mation and processing asymmetrical structures of pressure vessel pipe rocket motor case etc. The filament winding method is affected by several parameters such as pot life of process time viscosi-ty of resin filament winding temperature and schedules curing condition and post curing condi-tion of resin. To develope high functional composite materials the rotation(5, 15, 20, 30rpm) of the winding machine was controlled by D.C motor. And the wiper to give proper tension was equipped between strand and resin bath. The resin is hooked by the design wiper. The adequate cure schedule was found by DSC. NOL ring test is carried out to investigate the basic physical properties such as design technology. The void contents in filament winding is generally higher than that of the prepreg laminated plate. These high contents of void can make a crack in resin in spite of low deformation. These problem was solved by giving tension in processing. To improve the characteristics of fiber volume fraction void contents resin/fiber bonding the winding speedc is changed under constant tension. It was found that resin impregnation was not different from in fiber contents void contents at the range of 0.5~1kg tension but it was found that resin was not impregnated at the above of 1.5kg tension. In burst test a pure PE liner was failed at a nozzle part under the $14kg/\textrm{cm}^2$ pressure but a pressure vessel of CNG was failed at a cylinder part under the $200kg/\textrm{cm}^2$ pressure.

  • PDF