• Title/Summary/Keyword: CNG Vehicle

Search Result 86, Processing Time 0.026 seconds

A Study on Performance Characteristics with the Control System of CNG Regulator (CNG 레귤레이터의 제어 방식에 따른 성능특성 연구)

  • Seo, Ji-Won;Yang, Jeong-Jik;Kim, Jin-Ho;Lim, Jong-Wan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.33-38
    • /
    • 2017
  • The domestic vehicles remodeling the "CNG Bi-fuel Kit" are mostly in operation with installing the mechanical regulator applying the Diaphragm. However, due to the material characteristics of Diaphragm and characteristics of mechanical pressure control method, various problems are happening. This study tries to deduce the improvement plan through the checking of performance characteristics according to the pressure control method of CNG regulator and progress of comparative analysis. According to the test result, the decompression method applying the Diaphragm has advantage compared to the method applying the Piston. Furthermore, it was confirmed that through the electronic pressure control, it is possible to improve the general performance of the regulator.

Analysis of Check Valve Seal for CNG Vehicle Fuel Supply Line (CNG차량의 연료공급라인용 Check Valve Seal의 거동해석)

  • Yoo, Jae-Chan;Yeo, Kyeong-Mo;Kang, Byeong-Roo;Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.329-334
    • /
    • 2006
  • In CNG (Compressed natural gas) fuel supply line, whose main components are receptacle and check valve are used to charge high pressure gas to the tank of NGV (Natural gas vehicle). It is reported that the seal is separated occasionally form valve seat and results in blockage of gas flow. In this paper, MARC is used to investigate the reasons of seal separation and suggest design improvements. The static gas pressure distributions acting on the seal which calculated using FLUENT are considered to investigate accurate seal deformation behaviors. Deformed seal shapes are obtained for various amounts of seal interference and its location, gas pressure distributions and Young's modulus of the rubber used. The results showed that the reasons of seal separation problems are verified theoretically, and suggested examples of new design method. Therefore the present numerical methods can be applied in designing and performance analysis of rubber seals adopted in high pressure fluid machineries.

Distribution of Acoustic Emission Parameters during Load Holding for CNG Vehicle Fuel Tank (CNG 연료탱크의 내압상승시 발생하는 음향방출 변수들의 분포)

  • Jee, Hyun-Sup;Lee, Jong-O;Ju, No-Hoe;Lee, Jong-Kyu;So, Cheal-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.623-627
    • /
    • 2011
  • This is a study on the distribution of acoustic emission parameters during a burst test for a type-II CNG vehicle fuel tank. A resonant AE sensor with a central frequency of 150 kHz was attached to the composite materials in the center of the fuel tank. The pressure was increased from 30 to 100% of the expected burst pressure and was maintained for 10 minutes at each level. Damage at 70% of expected burst pressure occurred by various damage mechanisms including fiber breakage and delamination, while that of below 60% only occurred by matrix crack initiation and growth. The count, duration and rise time of the AE signal at 60% of the expected burst pressure are distributed below 500, 5000 ${\mu}s$ and 300 ${\mu}s$, respectively. Then, at above 70% they increased with pressure by superimposing of individual AE signal generated at a nearby place. These results confirmed that the analysis of the distribution of AE parameters is an effective tool for estimating damage of a CNG fuel tank.

Forensic Engineering Study on Assessment of Damage to Pressure Vessel Because of CNG Vehicle Explosion (CNG 차량 폭발의 용기 손상 평가에 관한 법공학적 연구)

  • Kim, Eui-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.439-445
    • /
    • 2011
  • Forensic Engineering is the art and science of professionals qualified to serve as engineering experts in courts of law or in arbitration proceedings. Buses using compressed natural gas (CNG) trend to be extended in use internationally as optimal counterplan for reducing discharge gas of light oil due to high concern about environment. However, CNG buses have to be equipped with composite pressure vessels (CPVs); since the CPVs contain compressed natural gas, the risks in the case of accident is very high. Hence, the investigation of such accidents is usually associated with engineering analysis. Among the possible reasons for such CNG explosion accidents is vehicle fire and vessel fracture. By conducting formal inspection and engineering tests, in this study, the cause of vessel explosion is investigated by analyzing the failure mechanism by fractography and by comparing the material properties of a reference part with those of a problem part by adopting instrumented indentation technique.

A Study on the Characteristics of High Pressure Regulator for Vehicle CNG (자동차 CNG용 고압 레귤레이터의 특성해석에 관한 연구)

  • Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5997-6003
    • /
    • 2011
  • To increase the driving distance of a natural gas vehicle, the high pressure of fuel charge is necessary and the development of the device reducing the pressure to suitable pressure for fuel of high pressure. In this study, Pressure characteristics at the pressure regulator, which is very important for gas supply systems for vehicles, are investigated. Numerical simulations are carried out to quantify pressures at regulators for several flow rates and to investigate pressure drop, hysteresis losses at some parts in the pressure regulator. Moreover, this paper presents a new kind of hydraulic simulation which is composed of CNG regulator. Lastly, experiments are carried out to verify the effectiveness of the prosed mathematical simulation with various regulator components as in real working condition.

A Basic Study on Combustion Characteristics of Radical Ignition Sub-chamber Type CNG DI Engine (라디칼 점화 부실 혼합형 CNG DI 엔진의 연소특성에 관한 기초연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Lim, Choon-Mee
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • After the recent fabrication of diesel vehicle exhaust gas by Volkswagen, nitrogen oxides ($NO_x$) and particulate matter (PM) are drawing attention as representative pollutants included in exhaust gas. When gasoline and diesel fuels are combusted through direct injection into a combustion chamber at high pressure, PM emission is actually increased. To find a solution to this problem, a basic study was conducted to derive an optimized variable for combustion of compressed natural gas (CNG) by applying CNG, acknowledged as a clean fuel, to direct injection system. The essence of this study is in the introduction of a radical ignition technology for compressed natural gas (RI-CNG) in a sub-chamber type engine. The direct injection system was applied to a sub-chamber to remove residual gas from previous combustion cycle. In addition, optimal mixer distribution was achieved by precisely setting ignition timing based on fuel injection timing and excess air ratio.

An Experimental Study on Performance & Exhaust Emission by Boost pressure Change in Compressed Natural Gas Engine (압축천연가스기관에서 부스트압력 변화에 따른 성능 및 배출가스에 관한 실험적 연구)

  • 오용석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.53-59
    • /
    • 2000
  • Recently air pollution is increased according to increase of vehicle. So many countries are studying about compressed natural gas engine. Research on the development of CNG dedicated engine that has important meaning both as a clean fuel and an alterna-tive energy to reduce the exhaust emission from diesel engine are actively going on these days. In this study the character-istics of CNG engine was investigated and the engine performance experimented by changing the parameters such as boost pressure. The CNG engine performance and exhaust emission were measured by engine performance mode at maximum load condition with increasing the rpm in the range of 1,000-2,200rpm. The exhaust emission was also measured at D-13 mode and compared to the emission regulation.

  • PDF

Design of Spark Advanced Controller for Improvement in Power and Torque of CNG Bi-Fuel Vehicle (압축천연가스 겸용 차량의 출력 및 토크 향상을 위한 점화 진각 제어기 설계)

  • Park, Jin-Hyun;Kim, Sung-Hoon;Cho, Seung-Wan;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1641-1646
    • /
    • 2010
  • Recently, environmental concerns increased, CNG fuel research for the prevention against air pollution is actively. But, the problems of CNG fuel have less output and a shorter charging distance than gasoline. Especially, the causes of the torque and output reduction are the mixed fuel has a combustion timing loss in case of CNG fuel which has a smaller heating value per a unit volume and a slower flame propagation speed than gasoline. In this paper, we design the spark advanced controller in consideration of the spark timing loss. Through the experimental of chassis dynamometer, we show that maximum power and torque have improved compared to that of general CNG bi-fuel system.