• Title/Summary/Keyword: CNC machine tool

Search Result 317, Processing Time 0.029 seconds

Design of Autonomus Manufacturing System (고기능 자율가공 시스템의 설계)

  • Lee, Hyeon-Yong;Song, Jun-Yeop;Lee, Jae-Jong;Kim, Seon-Ho
    • 연구논문집
    • /
    • s.25
    • /
    • pp.121-128
    • /
    • 1995
  • The early day of manufacturing automation systems are NC machine tool Based automation, and now it become FA, DNC, FMC, FMS, CIM and IMS. Manufacturing Automation Technology is applied the increase of all industrial manufacturing competitve power. so the demand of this skill is repidly increase. This Technology can solve lack of manpower, decrease of productivity, and become weakened international competitive. But, automation rate of our country is 30-40%, because the level of domestic technology is low, so we need systemic research of manufacturing automation. The targets of this study are increase the data processing ability of CNC controller, and development of autonomous manufacturing system that can decision making between production module such as setup, manufacturing, inspection and transportation and part that object of manufacturing.

  • PDF

Development of High Speed/Intelligent Machining System by PLUG/PLAY Method (PLUG/PLAY 방식 고속 지능형 가공 시스템의 연구)

  • 윤원수;김찬봉;권용찬;한기상;양희구;김세광;김주한;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.483-488
    • /
    • 2000
  • This study aims at developing the high speed/intelligent machining system using the plug/play method of an open architecture controller. The plug/play technology by the application Specific Function (ASF), can readily implement the open architecture controller into various machining system or other automatic devices. The plug/play method integrates the ASF, visual builder, controller OS technology. This study, as an example, presents a schematic diagram for integration of an open architecture CNC and individual component technology for the high speed/intelligent machining system.

  • PDF

Application of Incremental Sheet Metal Forming for Automotive Body-In-White Manufacturing (점진적 성형 기술을 이용한 자동차 차체 모형 제품의 제작)

  • Lee, S.U.;Nguyen, D.T.;Kim, N.K.;Yang, S.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.279-283
    • /
    • 2011
  • Recently incremental sheet metal forming (ISF) has used widely in making prototypes and small-volume products in automotive industry etc. We apply the ISF to make a 1/4 sized automobile body-in-white. First, ISF tests for rectangular shaped cup have been performed to clarify the formability denoting the relationship between the component wall angle and maximum cup height of safe forming. Next, a CAD model for the automobile was designed and segmented into several components in order to accommodate the working space of the CNC machine we adopted and the formability of the sheet metal. Then, a CAM software was employed to generate the tool path for manufacturing wooden dies and all the small parts. Finally, the different parts were joined into a single component by laser welding after the ISF process. By using the ISF we successfully produced the 1/4 sized automobile body-in-white.

A study on the advanced mirror mold for automobile (첨단 자동차용 거울의 금형에 관한 연구)

  • 홍민성;백철승
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.134-140
    • /
    • 1999
  • The side mirrors play an important role in driver's safety and convenience. People drive safely based on the side mirrors and room mirror through observation of environment. However, the drivers can not completely confront environments because of the dead angle of the side mirrors. In this research, based on geometric optics and geometric modeling, aspheric surfaces of the side mirror mold with dead angle free has been designed and machined in CNC machining center, Surface roughness of the mold was evaluated by using surface shaping system. The analysis on the shape of formed mirrors shows the mirrors have been reduced the dead angle comparing with the original mold.

  • PDF

Adaptive Cross-Coupling Control for High-Speed Nonlinear Contour Machining (고속의 비선형 윤곽가공을 위한 적응 교차축 연동제어)

  • Lee, Yong-Seok;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.108-114
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control(CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy more effectively than the existing method.

  • PDF

A Study on Balancing of High Speed Spindle using Influence Coefficient Method (영향계수법을 이용한 고속 스핀들의 밸런싱에 관한 연구)

  • Koo, Ja-Ham;Kim, In-Hwan;Hur, Nam-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.104-110
    • /
    • 2012
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, it was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

The Evaluation of Performance of 2-Axis Polishing Robot Attached to Machining Center (머시닝센터 장착형 2축 연마 로봇의 성능평가)

  • 박준혁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.411-416
    • /
    • 2000
  • Cutting process has been automated by progress of CNC and CAD/CAM, but polishing process has been depended on only experiential knowledge of expert. To automate the polishing process, a polishing robot with w degrees of freedom which is attached to a machining center with 3 degrees of freedom has been developed. This automatic polishing robot is able to keep the polishing tool normal on the curved surface of die to improve a performance of polishing. Polishing task for a curved surface die demands repetitive operation and high precision, but conventional control algorithm can not cope with the problem of disturbance such as a change of load. In this research, a new sliding mode control algorithm is applied to the robot. The signal compression method is used to identify polishing robot system. to obtain an effect of 5 degrees of freedom motion, a synchronization between the machining center and polishing robot is accomplished by using M code of machining center. And also a trajectory for polishing the curved surface die by 5 degrees of freedom motion, a synchronization between the machining center and polishing robot is accomplished by using M code of machining center. And also a trajectory for polishing the curved surface die by 5 axes machining center is divided into data of two types for 3 axes machining center and 2 axes polishing robot. To evaluate polishing performance of the robot. various experiments are carried out.

  • PDF

Study on the Machinability of Pinus densiflora at Chunyang District for Wood Patterns - Cutting Force, Surface Roughness and Suface Phenomenon by Face Milling - (목형용(木型用) 춘양목(春陽木)의 절삭가공(切削加工) 특성(特性)에 관(關)한 연구(硏究)(제2보(第2報)) - 정면(正面)밀링 절삭(切削)에 의한 절삭저항(切削抵抗), 표면조도(表面粗度) 및 가공표면상태(加工表面狀態) -)

  • Kim, Jeong-Du
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.61-69
    • /
    • 1988
  • Recently the automization of wood manufacturing and the development of CNC machine tools becomes the center of interest. Cutting mechanism, tool wear and the roughness of machined surface have been studied. In the studies about wood for special uses, concrete data of cutting is desired. While Pinus densiflora is characterized that heartwood develops as age increases, Chunyang District has the characteristic of strength, red color, relatively regular chap and high heartwood - percentage. But there is no data about cutting this wood, Chunyang District. In this study face milling by sintered carbide tool was excuted to Chunyang District. Cutting force, Surface roughness and states were investigated with regard to cutting speed. Example results were as follows; 1) Mean cutting resistance against lateral component force and longitudinal component force decreased rapidly up to cutting speed of 155 m/min, and remains constant above this speed. 2) The surface roughness of cutting surface lowered as cutting speed increased, regardless of fiber formation. Radial rougness of fiber is larger than lineal surface roughness. 3) Increase in Cutting speed made machining mark restrained. Down-milling showed larger marks than up-milling.

  • PDF

Reliability verification of cutting force experiment by the 3D-FEM analysis from reverse engineering design of milling tool (밀링 공구의 역 공학 설계에서 3D 유한요소 해석을 통한 절삭력 실험의 신뢰성 검증)

  • Jung, Sung-Taek;Wi, Eun-Chan;Kim, Hyun-Jeong;Song, Ki-Hyeok;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.54-59
    • /
    • 2019
  • CNC(Computer Numerical Control) machine tools are being used in various industrial fields such as aircraft and automobiles. The machining conditions used in the mold industry are used, and the simulation and the experiment are compared. The tool used in the experiment was carried out to increase the reliability of the simulation of the cutting machining. The program used in the 3D-FEM (finite element method) was the AdvantEdge and predicted by down-milling. The tool model is used 3D-FEM simulation by using the cutting force, temperature prediction. In this study, we carried out the verification of cutting force by using a 3-axis tool dynamometer (Kistler 9257B) system when machining the plastic mold Steel machining of NAK-80. The cutting force experiment data using on the charge amplifier (5070A) is amplified, and the 3-axis cutting force data are saved as a TDMS file using the Lab-View based program using on NI-PXIe-1062Q. The machining condition 7 was the most similar to the simulation and the experimental results. The material properties of the NAK-80 material and the simulation trends reflected in the reverse design of the tool were derived similarly to the experimental results.

Development of Manufacturing System Package for CFRP Machining (패키지형 탄소섬유복합재 가공시스템 개발)

  • Kim, Hyo-Young;Kim, Tae-Gon;Lee, Seok-Woo;Yoon, Han-Sol;Kyung, Dae-Su;Choi, In-Hue;Choi, Hyun;Ko, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.431-438
    • /
    • 2016
  • Recently, concerns about the environment are becoming more important because of global warming and the exhaustion of earth's resources. In the aviation and automobile industries, the application of light materials is increasingly important for eco-friendly and effective. Carbon Fiber Reinforced Plastics is a composite material which great formability and the high strength of carbon fiber. CFRP, which is both light and strong, is hard to manufacture. In addition, CFRP machining has a high chance of defects. This research discusses the development of a manufacturing system package for CFRP machining. It involving CFRP Drilling/Water-jet Manufacturing Machines, Inspection/Post-processing Systems, CNC platform for an EtherCAT servo Communication, Flexible Manufacturing Systems and CFRP machining Processes.