• Title/Summary/Keyword: CMR materials

Search Result 55, Processing Time 0.033 seconds

Status of Handling Carcinogenic, Mutagenic, and Reproductive Toxic Materials Contained in Oil Paint-related Products used by Automobile Maintenance Companies in Busan (부산지역 자동차정비업체에서 사용하는 유용성도료 관련 제품에 함유된 발암성, 생식세포변이원성, 생식독성 물질 취급 현황)

  • Eunseok Kim;Jiyoung Chun;Sangjun Choi
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.1
    • /
    • pp.40-49
    • /
    • 2023
  • Objectives: The handling of carcinogenic, mutagenic or reproductive toxic (CMR) materials in paint-related products used by automobile maintenance companies in Busan was investigated and its characteristics were analyzed. Methods: MSDS for paint-related chemical products used by automobile repair companies in Busan were collected and the manufacturers, product uses, names of chemical substances in each component, CAS numbers, content, and more were listed. Results: As a result of collecting MSDS on 4,800 kinds of products handled in the painting process of automobile repair companies in Busan and comparing them with the latest toxic information database, 60 out of a total of 438 substances were found as CMR materials. Seven carcinogens (1A), including quartz, benzene, formaldehyde, and hexavalent chromium, were present. Two reproductive toxic 1A substances were included: hexavalent chromium in paint pigments and lead. Conclusions: Most of the products (95.5%) were found to contain at least of one CMR component, so it was judged that a study on exposure assessment of CMR substances by automobile maintenance workers is needed in the future.

Left Atrial Strain Derived From Cardiac Magnetic Resonance Imaging Can Predict Outcomes of Patients With Acute Myocarditis

  • Jimin Lee;Ki Seok Choo;Yeon Joo Jeong;Geewon Lee;Minhee Hwang;Maria Roselle Abraham;Ji Won Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.512-521
    • /
    • 2023
  • Objective: There is increasing recognition that left atrial (LA) strain can be a prognostic marker of various cardiac diseases. However, its prognostic value in acute myocarditis remains unclear. Therefore, this study aimed to evaluate whether cardiovascular magnetic resonance (CMR)-derived parameters of LA strain can predict outcomes in patients with acute myocarditis. Materials and Methods: We retrospectively analyzed the data of 47 consecutive patients (44.2 ± 18.3 years; 29 males) with acute myocarditis who underwent CMR in 13.5 ± 9.7 days (range, 0-31 days) of symptom onset. Various parameters, including feature-tracked CMR-derived LA strain, were measured using CMR. The composite endpoints included cardiac death, heart transplantation, implantable cardioverter-defibrillator or pacemaker implantation, rehospitalization following a cardiac event, atrial fibrillation, or embolic stroke. The Cox regression analysis was performed to identify associations between the variables derived from CMR and the composite endpoints. Results: After a median follow-up of 37 months, 20 of the 47 (42.6%) patients experienced the composite events. In the multivariable Cox regression analysis, LA reservoir and conduit strains were independent predictors of the composite endpoints, with an adjusted hazard ratio per 1% increase of 0.90 (95% confidence interval [CI], 0.84-0.96; P = 0.002) and 0.91 (95% CI, 0.84-0.98; P = 0.013), respectively. Conclusion: LA reservoir and conduit strains derived from CMR are independent predictors of adverse clinical outcomes in patients with acute myocarditis.

Colossal Magnetoresistance in La-Ca-Mn-O

  • Jin, Sungho
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.28-33
    • /
    • 1997
  • Very large in electrical resistivity by several orders of magnitude is obtained when an external magnetic field is applied to the colossal magnetoresistnace (CMR) materials such as La-Ca-Mn-O. The magnetoresistance is strongly temperature-dependent, and exhibits a sharp peak below room temperature, which can be shifted by adjusting the composition or processing parameters. The control of lattice geometry or strain, e.g., by chemical substitution, epitaxial growth or post-deposition anneal of thin films appears to be crucial in obtaining the CMR properties. The orders of magnitude change in electrical resistivity could be useful for various magnetic and electric device applications. .

  • PDF

Electrical and Magnetic Properties in [La0.7(Ca1-xSrx)0.3MnO3)]0.99/(BaTiO3)0.01 Composites

  • Kim, Geun-Woo;Bian, Jin-Long;Seo, Yong-Jun;Koo, Bon-Heun
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.216-219
    • /
    • 2011
  • Perovskite manganites such as $RE_{1-x}A_xMnO_3$ (RE = rare earth, A = Ca, Sr, Ba) have been the subject of intense research in the last few years, ever since the discovery that these systems demonstrate colossal magnetoresistance (CMR). The CMR is usually explained with the double-exchange (DE) mechanism, and CMR materials have potential applications for magnetic switching, recording devices, and more. However, the intrinsic CMR effect is usually found under the conditions of a magnetic field of several Teslas and a narrow temperature range near the Curie temperature ($T_c$). This magnetic field and temperature range make practical applications impossible. Recently, another type of MR, called the low-field magnetoresistance(LFMR), has also been a research focus. This MR is typically found in polycrystalline half-metallic ferromagnets, and is associated with the spin-dependent charge transport across grain boundaries. Composites with compositions $La_{0.7}(Ca_{1-x}Sr_x)_{0.3}MnO_3)]_{0.99}/(BaTiO_3)_{0.01}$ $[(LCSMO)_{0.99}/(BTO)_{0.01}]$were prepared with different Sr doping levels x by a standard ceramic technique, and their electrical transport and magnetoresistance (MR) properties were investigated. The structure and morphology of the composites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). BTO peaks could not be found in the XRD pattern because the amount of BTO in the composites was too small. As the content of x decreased, the crystal structure changed from orthorhombic to rhombohedral. This change can be explained by the fact that the crystal structure of pure LCMO is orthorhombic and the crystal structure of pure LSMO is rhombohedral. The SEM results indicate that LCSMO and BTO coexist in the composites and BTO mostly segregates at the grain boundaries of LCSMO, which are in accordance with the results of the magnetic measurements. The resistivity of all the composites was measured in the range of 90-400K at 0T, 0.5T magnetic field. The result indicates that the MR of the composites increases systematically as the Ca concentration increases, although the transition temperature $T_c$ shifts to a lower range.

Comparison of the Diagnostic Accuracies of 1.5T and 3T Stress Myocardial Perfusion Cardiovascular Magnetic Resonance for Detecting Significant Coronary Artery Disease

  • Min, Jee Young;Ko, Sung Min;Song, In Young;Yi, Jung Geun;Hwang, Hweung Kon;Shin, Je Kyoun
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1007-1020
    • /
    • 2018
  • Objective: To compare the diagnostic performance of cardiovascular magnetic resonance (CMR) myocardial perfusion at 1.5- and 3-tesla (T) for detecting significant coronary artery disease (CAD), with invasive coronary angiography (ICA) as the reference method. Materials and Methods: We prospectively enrolled 281 patients (age $62.4{\pm}8.3$ years, 193 men) with suspected or known CAD who had undergone 1.5T or 3T CMR and ICA. Two independent radiologists interpreted perfusion defects. With ICA as the reference standard, the diagnostic performance of 1.5T and 3T CMR for identifying significant CAD (${\geq}50%$ diameter reduction of the left main and ${\geq}70%$ diameter reduction of other epicardial arteries) was determined. Results: No differences were observed in baseline characteristics or prevalence of CAD and old myocardial infarction (MI) using 1.5T (n = 135) or 3T (n = 146) systems. Sensitivity, specificity, positive and negative predictive values, and area under the receiver operating characteristic curve (AUC) for detecting significant CAD were similar between the 1.5T (84%, 64%, 74%, 76%, and 0.75 per patient and 68%, 83%, 66%, 84%, and 0.76 per vessel) and 3T (80%, 71%, 71%, 80%, and 0.76 per patient and 75%, 86%, 64%, 91%, and 0.81 per vessel) systems. In patients with multi-vessel CAD without old MI, the sensitivity, specificity, and AUC with 3T were greater than those with 1.5T on a per-vessel basis (71% vs. 36%, 92% vs. 69%, and 0.82 vs. 0.53, respectively). Conclusion: 3T CMR has similar diagnostic performance to 1.5T CMR in detecting significant CAD, except for higher diagnostic performance in patients with multi-vessel CAD without old MI.

Radiomics of Non-Contrast-Enhanced T1 Mapping: Diagnostic and Predictive Performance for Myocardial Injury in Acute ST-Segment-Elevation Myocardial Infarction

  • Quanmei Ma;Yue Ma;Tongtong Yu;Zhaoqing Sun;Yang Hou
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2021
  • Objective: To evaluate the feasibility of texture analysis on non-contrast-enhanced T1 maps of cardiac magnetic resonance (CMR) imaging for the diagnosis of myocardial injury in acute myocardial infarction (MI). Materials and Methods: This study included 68 patients (57 males and 11 females; mean age, 55.7 ± 10.5 years) with acute ST-segment-elevation MI who had undergone 3T CMR after a percutaneous coronary intervention. Forty patients of them also underwent a 6-month follow-up CMR. The CMR protocol included T2-weighted imaging, T1 mapping, rest first-pass perfusion, and late gadolinium enhancement. Radiomics features were extracted from the T1 maps using open-source software. Radiomics signatures were constructed with the selected strongest features to evaluate the myocardial injury severity and predict the recovery of left ventricular (LV) longitudinal systolic myocardial contractility. Results: A total of 1088 segments of the acute CMR images were analyzed; 103 (9.5%) segments showed microvascular obstruction (MVO), and 557 (51.2%) segments showed MI. A total of 640 segments were included in the 6-month follow-up analysis, of which 160 (25.0%) segments showed favorable recovery of LV longitudinal systolic myocardial contractility. Combined radiomics signature and T1 values resulted in a higher diagnostic performance for MVO compared to T1 values alone (area under the curve [AUC] in the training set; 0.88, 0.72, p = 0.031: AUC in the test set; 0.86, 0.71, p = 0.002). Combined radiomics signature and T1 values also provided a higher predictive value for LV longitudinal systolic myocardial contractility recovery compared to T1 values (AUC in the training set; 0.76, 0.55, p < 0.001: AUC in the test set; 0.77, 0.60, p < 0.001). Conclusion: The combination of radiomics of non-contrast-enhanced T1 mapping and T1 values could provide higher diagnostic accuracy for MVO. Radiomics also provides incremental value in the prediction of LV longitudinal systolic myocardial contractility at six months.