• Title/Summary/Keyword: CMP process

Search Result 468, Processing Time 0.025 seconds

Aging effect of annealed oxide CMP slurry (열처리된 산화막 CMP 슬러리의 노화 현상)

  • Lee, Woo-Sun;Shin, Jae-Wook;Choi, Kwon-Woo;Ko, Pil-Ju;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.335-338
    • /
    • 2003
  • Chemical mechanical polishing (CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of in the defect-free inter-layer dielectrics (ILD). Especially, defects such as micro-scratch lead to severe circuit failure which affect yield. CMP slurries can contain particles exceeding $1\;{\mu}m$ in size, which could cause micro-scratch on the wafer surface. In this paper, we have studied aging effect the of CMP sin as a function of particle size. We prepared and compared the self-developed silica slurry by adding of abrasives before and after annealing. As our preliminary experiment results, we could be obtained the relatively stable slurry characteristics comparable to original silica slurry in the slurry aging effect.

  • PDF

Study on the Pad Wear Profile Based on the Conditioner Swing Using Deep Learning for CMP Pad Conditioning (CMP 패드 컨디셔닝에서 딥러닝을 활용한 컨디셔너 스윙에 따른 패드 마모 프로파일에 관한 연구)

  • Byeonghun Park;Haeseong Hwang;Hyunseop Lee
    • Tribology and Lubricants
    • /
    • v.40 no.2
    • /
    • pp.67-70
    • /
    • 2024
  • Chemical mechanical planarization (CMP) is an essential process for ensuring high integration when manufacturing semiconductor devices. CMP mainly requires the use of polyurethane-based polishing pads as an ultraprecise process to achieve mechanical material removal and the required chemical reactions. A diamond disk performs pad conditioning to remove processing residues on the pad surface and maintain sufficient surface roughness during CMP. However, the diamond grits attached to the disk cause uneven wear of the pad, leading to the poor uniformity of material removal during CMP. This study investigates the pad wear rate profile according to the swing motion of the conditioner during swing-arm-type CMP conditioning using deep learning. During conditioning, the motion of the swing arm is independently controlled in eight zones of the same pad radius. The experiment includes six swingmotion conditions to obtain actual data on the pad wear rate profile, and deep learning learns the pad wear rate profile obtained in the experiment. The absolute average error rate between the experimental values and learning results is 0.01%. This finding confirms that the experimental results can be well represented by learning. Pad wear rate profile prediction using the learning results reveals good agreement between the predicted and experimental values.

Effect of Surface Roughness of Sapphire Wafer on Chemical Mechanical Polishing after Lap-Grinding (랩그라인딩 후 사파이어 웨이퍼의 표면거칠기가 화학기계적 연마에 미치는 영향)

  • Seo, Junyoung;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.323-329
    • /
    • 2019
  • Sapphire is currently used as a substrate material for blue light-emitting diodes (LEDs). The market for sapphire substrates has expanded rapidly as the use of LEDs has extended into various industries. However, sapphire is classified as one of the most difficult materials to machine due to its hardness and brittleness. Recently, a lap-grinding process has been developed to combine the lapping and diamond mechanical polishing (DMP) steps in a single process. This paper studies, the effect of wafer surface roughness on the chemical mechanical polishing (CMP) process by pressure and abrasive concentration in the lap-grinding process of a sapphire wafer. In this experiment, the surface roughness of a sapphire wafer is measured after lap-grinding by varying the pressure and abrasive concentration of the slurry. CMP is carried out under pressure conditions of 4.27 psi, a plate rotation speed of 103 rpm, head rotation speed of 97 rpm, and slurry flow rate of 170 ml/min. The abrasive concentration of the CMP slurry was 20wt, implying that the higher the surface roughness after lapgrinding, the higher the material removal rate (MRR) in the CMP. This is likely due to the real contact area and actual contact pressure between the rough wafer and polishing pad during the CMP. In addition, wafers with low surface roughness after lap-grinding show lower surface roughness values in CMP processes than wafers with high surface roughness values; therefore, further research is needed to obtain sufficient surface roughness before performing CMP processes.

A study on the recycle of reused slurry abrasives (CMP 폐슬러리내의 필터링된 연마 입자 재활용에 관한 연구)

  • Kim, Gi-Uk;Seo, Yong-Jin;Park, Sung-Woo;Jeong, So-Young;Kim, Chul-Bok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.50-53
    • /
    • 2003
  • CMP (chemical mechanical polishing) process remained to solve several problems in deep sub-micron integrated circuit manufacturing process. especially consumables (polishing pad, backing film, slurry, pad conditioner), one of the most important components in the CMP system is the slurry. Among the composition of slurries (buffer solution, bulk solution, abrasive particle, oxidizer, inhibitor, suspension, antifoaming agent, dispersion agent), the abrasive particles are important in determining polish rate and planarization ability of a CMP process. However, the cost of abrasives is still very high. So, in order to reduce the high COO (cost of ownership) and COC (cost of consumables) in this paper, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size and hardness. Also, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

Fatigue Properties of $Pb(Zr,Ti)O_3$ Thin Film Capacitor by Cleaning Process in Post-CMP (CMP 공정후 세정공정 여부에 따른 $Pb(Zr,Ti)O_3$ 박막 캐패시터의 피로 특성)

  • Jun, Young-Kil;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.139-140
    • /
    • 2006
  • PZT박막은 비휘발성 재료로 유전율이 높고 항전력이 작으면서 잔류 분극랑이 크기 때문에 적합한 특성을 가지고 FeRAM에 매력적인 물질이다. CMP(chemical mechanical polishing)는 기존의 회생막의 전면 식각 공정과는 달리 특정 부위의 제거 속도를 조절함으로써 평탄화 하는 기술로 wafer 전면을 회전하는 탄성 패드 사이에 액상의 Slurry를 투입하여 연마하는 기술이다. 본 논문에서는 CMP 공정으로 제조한 PZT박막 캐패시터에서 CMP 후처리공정(세척)의 유무 및 종류에 따라 피로특성에 대하여 연구하였다, PZT 박막의 캐패시터의 피로 특성을 연구한 결과 CMP 후처리공정 SC-l용액을 사용하여 세정공정을 하였을때 가장 향상된 PZT 캐패시터의 피로특성이 나타났다.

  • PDF

Fixed Abrasive Pad with Self-conditioning in CMP Process (Self-conditioning 고정입자패드를 이용한 CMP)

  • Park, Boumyoung;Lee, Hyunseop;Park, Kihyun;Seo, Heondeok;Jeong, Haedo;Kim, Hoyoun;Kim, Hyoungjae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.321-326
    • /
    • 2005
  • Chemical mechanical polishing(CMP) process is essential technology to be applied to manufacturing the dielectric layer and metal line in semiconductor devices. It has been known that overpolishing in CMP depends on pattern selectivity as a function of density and pitch, and use of fixed abrasive pad(FAP) is one method which can improve the pattern selectivity. Thus, dishing & erosion defects can be reduced. This paper introduces the manufacturing technique of FAP using hydrophilic polymers with swelling characteristic in water and explains the self-conditioning phenomenon. When applied to tungsten blanket wafers, the FAP resulted in appropriate performance in point of uniformity, material selectivity and roughness. Especially, reduced dishing and erosion was observed in CMP of tungsten pattern wafer with the proposed FAP.

Chemical Mechanical Polishing (CMP) Characteristics of Ferroelectric BST Thin Film (강유전체막의 CMP 특성)

  • Park, Sung-Woo;Kim, Nam-Hoom;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.719-722
    • /
    • 2004
  • In this work, we applied the chemical mechanical polishing (CMP) process to the planarization of ferroelectric film. We compared the structural characteristics of BST $(Ba_{0.6}Sr_{0.4}TiO_3)$ films before and after the CMP process. Their dependence on slurry composition was also investigated. Finally, we suggest the self-developed titania $(TiO_2)$ mixed abrasive slurry (MAS) for FRAM applications. Our experimental results on the ferroelectric film are encouraging for the next generation of FRAM applications.

  • PDF

Global planarization Characteristic of $WO_3$ ($WO_3$ 박막의 광역평탄화 특성)

  • Lee, Woo-Sun;Ko, Pi-Ju;Choi, Gwon-Woo;Kim, Tae-Wan;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.89-92
    • /
    • 2004
  • Chemical mechanical polishing (CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of in the defect-free inter-level dielectrics (ILD). we investigated the performance of $WO_3$ CMP used silica slurry, ceria slurry, tungsten slurry. In this paper, the effects of addition oxidizer on the $WO_3$ CMP characteristics were investigated to obtain the higher removal rate and lower non-uniformity.

  • PDF

CMP of PZT Films for ERAM Applications (강유전소자 적용을 위한 PZT박막의 CMP 공정 연구)

  • Seo, Yong-Jin;Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.107-108
    • /
    • 2005
  • In this paper, we first applied the chemical mechanical polishing (CMP) process to the planarization of ferroelectric film in order to obtain a good planarity of electrode/ferroelectric film interface. $Pb_{1.1}(Zr_{0.52}Ti_{0.48})O_3$ (shortly PZT) ferroelectric film was fabricated by the sol-gel method. And then, we compared the structural characteristics before and after CMP process of PZT films. Their dependence on slurry composition was also investigated. We expect that our results will be useful promise of global planarization for ferroelectric random access memories (FRAM) application in the near future.

  • PDF

Optimization of Double Polishing Pad for STI-CMP Applications (STI-CMP 적용을 위한 이중 연마 패드의 최적화)

  • Park, Seong-U;Seo, Yong-Jin;Kim, Sang-Yong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.311-315
    • /
    • 2002
  • Chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric(IMD), inter-level dielectric (ILD) layers of multi-layer interconnections. In this paper, we studied the characteristics of polishing pad, which can apply shallow trench isolation (STI)-CMP process for global planarization of multi-level interconnection structure. Also, we investigated the effects of different sets of polishing pad, such as soft and hard pad. As an experimental result, hard pad showed center-fast type, and soft pad showed edge-fast type. Totally, the defect level has shown little difference, however, the counts of scratch was detected less than 2 on JR111 pad. Through the above results, we can select optimum polishing pad, so we can expect the improvements of throughput and device yield.