• Title/Summary/Keyword: CMOS Process

Search Result 1,650, Processing Time 0.027 seconds

PFM-Mode Boost DC-DC Convertor for Mobile Multimedia Application (휴대용 멀티기기를 위한 PFM방식의 승압형 DC-DC 변환기)

  • Kim, Ji-Man;Park, Yong-Su;Song, Han-Jung
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.14-18
    • /
    • 2010
  • In this paper, we describe a CMOS DC-DC converter with a variable output voltage(5-7V @100mA) for a portable battery-operated system applications. The proposed DC-DC converter is used along with a Pulse-Frequency Modulation (PFM) method and consists of reference circuit, a feedback resistor, a controller, and an internal oscillator. The integrated DC-DC converter with two external passive components(L,C) has been designed and fabricated on a 0.5um 2-poly 3-metal CMOS process and could be applied to the Personal Digital Assistants(PDA), cellular Phone, Laptop Computer, etc.

Design of a 12-bit 1MSps SAR ADC using 0.18㎛ CMOS Process (0.18㎛ CMOS 공정을 이용한 12-bit 1MSps 연속 근사화 아날로그-디지털 변환기 설계)

  • Seong, Myeong-U;Choi, Seong-Kyu;Kim, Sung-Woo;Kim, Shin-Gon;Lee, Joo-Seob;Oh, Se-Moung;Seo, Min-Soo;Ryu, Jee-Youl
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.365-367
    • /
    • 2013
  • 본 논문에서는 $0.18{\mu}m$ CMOS 공정 기술을 이용하여 12-bit 1MSps 연속 근사화 아날로그-디지털 변환기(Analog to Digital Converter : ADC)를 설계하였다. 설계된 아날로그-디지털 변환기는 Cadence Tool을 이용하여 시뮬레이션 및 레이아웃을 진행하였다. 시뮬레이션 결과 1.8V의 공급전압에서 전력 소모는 5.5mW였고, 입력 신호의 주파수가 100kHz일 때, SNDR은 70.03dB, 유효 비트수는 11.34bit의 결과를 보였다. 설계된 변환기는 $0.8mm{\times}0.7mm$ 크기로 레이아웃 되었다.

  • PDF

Design of monolithic DC-DC Buck converter with on chip soft-start circuit (온칩 시동회로를 갖는 CMOS DC-DC 벅 변환기 설계)

  • Park, Seung-Chan;Lim, Dong-Kyun;Lee, Sang-Min;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.568-573
    • /
    • 2009
  • This paper presents a step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in O.13um CMOS standard process. In an effort to decrease system volume, this paper proposes the on chip compensation circuit using capacitor multiplier method. Capacitor multiplier method can minimize error amplifier's compensation capacitor size by 10%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87.2% for the output voltage of 1.2V (input voltage : 3.3V), maximum load current 500mA, and 25mA output ripple current. This voltage mode controled buck converter has 1MHz switching frequency.

A delay model for CMOS inverter (CMOS 인버터의 지연 시간 모델)

  • 김동욱;최태용;정병권
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.11-21
    • /
    • 1997
  • The delay models for CMOS invertr presented so far predicted the delay time quite accurately whens input transition-time is very small. But the problem that the accuracy is inclined to decrease becomes apparent as input transition tiem increases. In this paper, a delay model for CMOS inverter is presented, which accuractely predicts the delay time even though input transition-time increases. To inverter must be included in modeling process because the main reason of inaccuracy as input transition tiem is the leakage current through the complementary MOS. For efficient modeling, this paper first models the MOSes with simple I-V charcteristic, with which both the pMOS and the nMOS are considered easily in calculating the inverter delay times. This resulting model needs few parameters and re-models each MOS effectively and simply evaluates output voltage to predict delay time, delay values obtained from this effectively and simply evaluates output voltage to predict delay time, delay values obtained from this model have been found to be within about 5% error rate of the SPICE results. The calculation time to predict the delay time with the model from this paper has the speed of more than 70times as fast as to the SPICE.

  • PDF

Giga-bps CMOS Clock and Data Recovery Circuit with a novel Adaptive Phase Detector (새로운 구조의 적응형 위상 검출기를 갖는 Gbps급 CMOS 클럭/데이타 복원 회로)

  • 이재욱;이천오;최우영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.987-992
    • /
    • 2002
  • In this paper, a new clock and data recovery circuit is proposed for the application of data communication systems requiring ㎓-range clock signals. The circuit is suitable for recovering NRZ data which is widely used for high speed data transmission in ㎓ ranges. The high frequency jitter is one of major performance-limiting factors in PLL, particularly when NRZ data patterns are used. A novel phase detector is able to suppress this noise, and stable clock generation is achieved. Futhermore, the phase detector has an adaptive delay cell removing the dead zone problem and has the optimal characteristics for fast locking. The proposed circuit has a convenience structure that can be easily extended to multi-channels. The circuit is designed based on CMOS 0.25㎛ fabrication process and verified by measurement result.

A Study on The IC Design of 1[V] CMOS Operational Amplifier with Rail-to-rail Output Ranges (Rail-to-rail 출력을 갖는 1[V] CMOS Operational Amplifiler 설계 및 IC 화에 관한 연구)

  • Jeon, Dong-Hwan;Son, Sang-Hui
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.461-466
    • /
    • 1999
  • A CMOS op amp with rail-to-rail input and output ranges is designed in a one-volt supply. The output stage of the op amp is used in a common source amplifier that operates in sub-threshold region to design a low voltage op amp with rail-to-tail output range. To drive heavy resistor and capacitor loads with rail-to-rail output ranges, a common source amplifier which has a low output resistance is utilized. A bulk-driven differential pair and a bulk-driven folded cascode amplifier are used in the designed op amp to increase input range and achieve 1 V operation. Post layout simulation results show that low frequency gain is about 58 ㏈ and gain bandwidth I MHz. The designed op amp has been fabricated in a 0.8${\mu}{\textrm}{m}$ standard CMOS process. The measured results show that this op amp provides rail-to-rail output range, 56㏈ dc gain with 1 MΩ load and has 0.4 MHz gain-bandwidth with 130 ㎊ and 1 kΩ loads.

  • PDF

Linearization of CMOS Drive Amplifier with IMD Canceller (IMD 상쇄기를 적용한 CMOS 구동 증폭기 선형화 방법)

  • Kim, Do-Gyun;Hong, Nam-Pyo;Moon, Yon-Tae;Choi, Young-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.999-1003
    • /
    • 2009
  • We have designed and fabricated a linear drive amplifier with a novel intermodulation distortion(IMD) canceller using $0.18{\mu}m$ CMOS process. The drive amplifier with IMD canceller is composed of a cascode main amplifier and an additional common-source IMD canceller. Since the IMD canceller generates IM3($3^{rd}$-order imtermodulation) signal with $180^{\circ}$ phase difference against the IM3 of the cascode main amplifier, the IM3 power is drastically eliminated. As of the measurement results, $OP_{1dB}$, $OIP_3$, and power-add efficiency are 5.5 dBm, 15.5 dBm, and 21%, respectively. Those are 5 dB, 6 dB, and 13.5% enhanced values compared to a conventional cascode drive amplifier. The IMD3 of the drive amplifier with IMD canceller is enhanced more than 10 dB compared to that of the conventional cascode drive amplifier for input power ranges from -22 to -14 dBm.

Design of Multi-Valued Process using SD, PD (SD 수, PD 수를 이용한 다치 연산기의 설계)

  • 임석범;송홍복
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.439-446
    • /
    • 1998
  • This paper presents design of SD adder and PD adder on Multi-Valued Logic. For implementing of Multi-valued logic circuits we use Current-mode CMOS circuits and also use Voltage-mode CMOS circuits partially. The proposed arithmetic circuits was estimated by SPICE simulation. At the SD(Signed-Digit) number presentation applying Multi-Valued logic the carry propagation is always limited to one position to the left this number presentation allows fast parallel operation. The addition method that add M operands using PD( positive digit number) is effective not only for the realization of the high-speed compact arithmetic circuit, but also for the reduction of the interconnection in the VLSI processor. therefor, if we use PD number representation, the high speed processor can be implementation.

  • PDF

Design of CMOS Temperature Sensor Using Ring Oscillator (링발진기를 이용한 CMOS 온도센서 설계)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2081-2086
    • /
    • 2015
  • The temperature sensor using ring oscillator is designed by 0.18㎛ CMOS process and the supply voltage is 1.5volts. The temperature sensor is designed by using temperature-independent and temperature-dependent ring oscillators and the output frequency of temperature-independent ring oscillator is constant with temperature and the output frequency of temperature-dependent ring oscillator decreases with increasing temperature. To convert the temperature to a digital value the output signal of temperature-independent ring oscillator is used for the clock signal and the output signal of temperature-dependent ring oscillator is used for the enable signal of counter. From HSPICE simulation results, the temperature error is less than form -0.7℃ to 1.0℃ when the operating temperature is varied from -20℃ to 70℃.

Linear-logarithmic Active Pixel Sensor with Photogate for Wide Dynamic Range CMOS Image Sensor

  • Bae, Myunghan;Jo, Sung-Hyun;Choi, Byoung-Soo;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.79-82
    • /
    • 2015
  • This paper proposes a novel complementary metal oxide semiconductor (CMOS) active pixel sensor (APS) and presents its performance characteristics. The proposed APS exhibits a linear-logarithmic response, which is simulated using a standard $0.35-{\mu}m$ CMOS process. To maintain high sensitivity and improve the dynamic range (DR) of the proposed APS at low and high-intensity light, respectively, two additional nMOSFETs are integrated into the structure of the proposed APS, along with a photogate. The applied photogate voltage reduces the sensitivity of the proposed APS in the linear response regime. Thus, the conversion gain of the proposed APS changes from high to low owing to the addition of the capacitance of the photogate to that of the sensing node. Under high-intensity light, the integrated MOSFETs serve as voltage-light dependent active loads and are responsible for logarithmic compression. The DR of the proposed APS can be improved on the basis of the logarithmic response. Furthermore, the reference voltages enable the tuning of the sensitivity of the photodetector, as well as the DR of the APS.