• 제목/요약/키워드: CMOS Camera

검색결과 125건 처리시간 0.024초

LED transceivers with beehive-shaped reflector for visible light communication

  • Sohn, Kyung-Rak;Kim, Min-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.169-174
    • /
    • 2014
  • This paper proposes a novel beehive-shaped reflector for application to light-emitting diode (LED) transceivers for illumination and bi-directional visible light communication (VLC). By using a diffuse propagation model extended to line-of-sight and direct signals, the distribution of illuminance and the path loss of the transceiver are investigated to evaluate the performance of the beehive-shaped reflector. To verify bi-directional communication, a VLC-based image capture system, comprising a complementary metal-oxide semiconductor (CMOS) image sensor and video processor unit, is demonstrated. Real-time images captured by the CMOS camera are successfully transmitted to the monitoring system via a free-space channel at a rate of 115.2 kbps.

Applications of Smartphone Cameras in Agriculture, Environment, and Food: A review

  • Kwon, Ojun;Park, Tusan
    • Journal of Biosystems Engineering
    • /
    • 제42권4호
    • /
    • pp.330-338
    • /
    • 2017
  • Purpose: The smartphone is actively being used in many research fields, primarily in medical and diagnostic applications. However, there are cases in which smartphone-based systems have been developed for agriculture, environment, and food applications. The purpose of this review is to summarize the research cases using smartphone cameras in agriculture, environment, and food. Methods: This review introduces seventeen research cases which used smartphone cameras in agriculture, food, water, and soil applications. These were classified as systems involving "smartphone-camera-alone" and "smartphone camera with optical accessories". Results: Detecting food-borne pathogens, analyzing the quality of foods, monitoring water quality and safety, gathering information regarding plant growth or damage, identifying weeds, and measuring soil loss after rain were presented for the smartphone-camera-alone system. Measuring food and water quality and safety, phenotyping seeds, and soil classifications were presented for the smartphone camera with optical accessories. Conclusions: Smartphone cameras were applied in various areas for several purposes. The use of smartphone cameras has advantages regarding high-resolution imaging, manual or auto exposure and focus control, ease of use, portability, image storage, and most importantly, programmability. The studies discussed were achieved by sensitivity improvements of CCDs (charge-coupled devices) and CMOS (complementary metal-oxide-semiconductor) on smartphone cameras and improved computing power of the smartphone, respectively. A smartphone camera-based system can be used with ease, low cost, in near-real-time, and on-site. This review article presents the applications and potential of the smartphone and the smartphone camera used for various purposes in agriculture, environment, and food.

CMOS 이미지 센서의 영상 개선을 위한 실시간 전처리 프로세서의 설계 (Design of Real-Time PreProcessor for Image Enhancement of CMOS Image Sensor)

  • 정윤호;이준환;김재석;임원배;허봉수;강문기
    • 대한전자공학회논문지SD
    • /
    • 제38권8호
    • /
    • pp.62-71
    • /
    • 2001
  • 본 논문은 CMOS 이미지 센서에서 획득한 영상의 품질을 개선하기 위한 실시간 전처리 프로세서의 설계를 제시한다. CMOS 이미지 센서는 기존 IC와의 통합, 저전력소모, 저가격화등의 다양한 이점을 갖지만, 기존의 CCD 소자로부터 획득한 영상에 비해 열등한 품질의 영상을 제공하는 단점이 있다. CMOS 이미지 센서의 이러한 물리적 한계를 극복하기 위해 본 논문에서 제안하는 전처리 프로세서에는 색상 보간, 색상 보정, 감마 보정, 자동 노출 조정 등의 기본적인 전처리 알고리즘 외에 공간 가변적 대비 향상 알고리즘이 포함되었다. 여기에서 제안하는 전처리 프로세서는 이러한 알고리즘을 효율적으로 구현하기 위한 하드웨어 구조를 가지며, VHDL 언어를 이용하여 설계 및 검증되었다. 설계된 전처리 프로세서는 합성 결과 약 19K의 논리 게이트를 포함하였으며, 이는 저가격의 PC 카메라 구현에 적합하다. 제안된 전처리 프로세서의 실시간 동작 여부를 검증하기 위해 설계된 전처리 프로세서는 Altera사의 Flex EPF10KGC503-3 FPGA 칩으로 구현되었으며, 성공적으로 동작함을 확인하였다.

  • PDF

IP 카메라를 위한 서버 및 클라이언트 구현 (An Implementation of Server & Client for IP Camera)

  • 임성락;이우영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.1609-1612
    • /
    • 2010
  • 인터넷을 통하여 동영상을 실시간으로 감시하고 사용자의 요청에 따라 저장 및 재생할 수 있는 IP 카메라를 위한 서버 및 클라이언트를 리눅스와 윈도우즈 환경에서 각각 구현하여 CMOS 카메라가 연결된 EZ-S3C2440 임베디드 보드에서 실험하였다.

CCD 영상센서를 위한 CMOS 아날로그 프론트 엔드 (CMOS Analog-Front End for CCD Image Sensors)

  • 김대정;남정권
    • 전기전자학회논문지
    • /
    • 제13권1호
    • /
    • pp.41-48
    • /
    • 2009
  • 본 논문은 고성능 이미지 센서인 CCD 시스템에서 전체 시스템의 성능을 좌우하는 아날로그 프론트 엔드(analog-front end, AFE)를 영상신호처리 유닛과 함께 SoC로써 구현한 설계에 관한 것이다. 데이터의 전송속도가 빨라짐에 따라 데이터 샘플링의 불확실성을 낮추었으며, $0{\sim}36\;dB$의 높은 이득을 가지는 지수함수적인 가변 이득단의 대역폭을 구현하기 위한 구조 및 증폭기의 정밀도를 높이기 위한 기생 커패시턴스에 둔감한 커패시터 배열을 개발하였다. 또한, 블랙-레벨 상쇄를 위한 아날로그 및 디지털 영역에서의 이중 블랙 레벨 상쇄를 효과적으로 구현하였다. 제안된 구조를 $0.35-{\mu}m$ CMOS 공정으로 구현하였으며, 10-bit 해상도의 전체 CCD 카메라 시스템에 적용하여 그 동작을 검증하였다. 제안한 AFE는 3.3 V 공급전압 및 15 MHz의 데이터 전송속도에서 80 mA를 소모하였다.

  • PDF

수광 회로와 윤곽 검출 회로의 분리를 통한 윤곽 검출용 시각칩의 해상도 향상 (Resolution improvement of a CMOS vision chip for edge detection by separating photo-sensing and edge detection circuits)

  • 공재성;서성호;김상헌;신장규;이민호
    • 센서학회지
    • /
    • 제15권2호
    • /
    • pp.112-119
    • /
    • 2006
  • Resolution of an image sensor is very significant parameter to improve. It is hard to improve the resolution of the CMOS vision chip for edge detection based on a biological retina using a resistive network because the vision chip contains additional circuits such as a resistive network and some processing circuits comparing with general image sensors such as CMOS image sensor (CIS). In this paper, we proved the problem of low resolution by separating photo-sensing and signal processing circuits. This type of vision chips occurs a problem of low operation speed because the signal processing circuits should be commonly used in a row of the photo-sensors. The low speed problem of operation was proved by using a reset decoder. A vision chip for edge detection with $128{\times}128$ pixel array has been designed and fabricated by using $0.35{\mu}m$ 2-poly 4-metal CMOS technology. The fabricated chip was integrated with optical lens as a camera system and investigated with real image. By using this chip, we could achieved sufficient edge images for real application.

컬러 카메라를 이용한 측면유동 면역 어세이 정량분석 방법 (A Method for Quantitative Measurement of Lateral Flow Immunoassay Using Color Camera)

  • 박종원
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2014
  • Among semi-quantitative or fully quantitative lateral flow assay readers, an image sensor-based instrument has been widely used because of its simple setup, cheap sensor price, and compact equipment size. For all previous approaches, monochrome CCD or CMOS cameras were used for lateral flow assay imaging in which the overall intensities of all colors were taken into consideration to estimate the analyte content, although the analyte related color information is only limited to a narrow wavelength range. In the present work, we introduced a color CCD camera as a sensor and a color decomposition method to improve the sensitivity of the quantitative biosensor system which utilizes the lateral flow assay successfully. The proposed setup and image processing method were applied to achieve the quantification of imitatively dispensed particles on the surface of a porous membrane first, and the measurement result was then compared with that using a monochrome CCD. The compensation method was proposed in different illumination conditions. Eventually, the color decomposition method was introduced to the commercially available lateral flow immunochromatographic assay for the diagnosis of myocardial infarction. The measurement sensitivity utilizing the color image sensor is significantly improved since the slopes of the linear curve fit are enhanced from 0.0026 to 0.0040 and from 0.0802 to 0.1141 for myoglobin and creatine kinase (CK)-MB detection, respectively.

Development of Data Fusion Human Identification System Based on Finger-Vein Pattern-Matching Method and photoplethysmography Identification

  • Ko, Kuk Won;Lee, Jiyeon;Moon, Hongsuk;Lee, Sangjoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권2호
    • /
    • pp.149-154
    • /
    • 2015
  • Biometric techniques for authentication using body parts such as a fingerprint, face, iris, voice, finger-vein and also photoplethysmography have become increasingly important in the personal security field, including door access control, finance security, electronic passport, and mobile device. Finger-vein images are now used to human identification, however, difficulties in recognizing finger-vein images are caused by capturing under various conditions, such as different temperatures and illumination, and noise in the acquisition camera. The human photoplethysmography is also important signal for human identification. In this paper To increase the recognition rate, we develop camera based identification method by combining finger vein image and photoplethysmography signal. We use a compact CMOS camera with a penetrating infrared LED light source to acquire images of finger vein and photoplethysmography signal. In addition, we suggest a simple pattern matching method to reduce the calculation time for embedded environments. The experimental results show that our simple system has good results in terms of speed and accuracy for personal identification compared to the result of only finger vein images.

VLSI Implementation of Adaptive Shading Correction System Supporting Multi-Resolution for Mobile Camera

  • Ha, Joo-Young;Lee, Sung-Mok;Jang, Won-Woo;Yang, Hoon-Gee;Kang, Bong-Soon
    • 한국통신학회논문지
    • /
    • 제31권12C호
    • /
    • pp.1201-1207
    • /
    • 2006
  • In this paper, we say the adaptive shading correction system supporting multi-resolution for mobile camera. The shading effect is caused by non-uniform illumination, non-uniform camera sensitivity, or even dirt and dust on glass (lens) surfaces. In general this shading effect is undesirable [1-3]. Eliminating it is frequently necessary for subsequent processing and especially when quantitative microscopy is the fine goal. The proposed system is available on thirty nine kinds of image resolutions scanned by interlaced and progressive type. Moreover, the system is using forty kinds of continuous quadratic equations instead of using the piece-wise linear curve which is composed of multiple line segments. Finally, the system could correct the shading effect without discontinuity in any image resolution. The proposed system is implemented in VLSI with cell library based on Hynix $0.25{\mu}m$ CMOS technology.

A Study on Depth Information Acquisition Improved by Gradual Pixel Bundling Method at TOF Image Sensor

  • Kwon, Soon Chul;Chae, Ho Byung;Lee, Sung Jin;Son, Kwang Chul;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권1호
    • /
    • pp.15-19
    • /
    • 2015
  • The depth information of an image is used in a variety of applications including 2D/3D conversion, multi-view extraction, modeling, depth keying, etc. There are various methods to acquire depth information, such as the method to use a stereo camera, the method to use the depth camera of flight time (TOF) method, the method to use 3D modeling software, the method to use 3D scanner and the method to use a structured light just like Microsoft's Kinect. In particular, the depth camera of TOF method measures the distance using infrared light, whereas TOF sensor depends on the sensitivity of optical light of an image sensor (CCD/CMOS). Thus, it is mandatory for the existing image sensors to get an infrared light image by bundling several pixels; these requirements generate a phenomenon to reduce the resolution of an image. This thesis proposed a measure to acquire a high-resolution image through gradual area movement while acquiring a low-resolution image through pixel bundling method. From this measure, one can obtain an effect of acquiring image information in which illumination intensity (lux) and resolution were improved without increasing the performance of an image sensor since the image resolution is not improved as resolving a low-illumination intensity (lux) in accordance with the gradual pixel bundling algorithm.