• Title/Summary/Keyword: CMEs

Search Result 116, Processing Time 0.027 seconds

Estimation of CME 3-D parameters using a full ice-cream cone model

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2017
  • In space weather forecast, it is important to determine three-dimensional properties of CMEs. Using 29 limb CMEs, we examine which cone type is close to a CME three-dimensional structure. We find that most CMEs have near full ice-cream cone structure which is a symmetrical circular cone combined with a hemisphere. We develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model). In addition, we derive CME mean density (${\bar{\rho}_{CME}}={\frac{M_{total}}{V_{cone}}}$) based on the full ice-cream cone structure. For several limb events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. For the first time, we derive average CME densities as a function of CME height for several CMEs, which are well fitted to power-law functions. We will compare densities (front and average) of geoeffective CMEs and their corresponding ICME ones.

  • PDF

Low ionization state plasma in CMEs

  • Lee, Jin-Yi;Raymond, John C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.115.1-115.1
    • /
    • 2012
  • The Ultraviolet Coronagraph Spectrometer on board the Solar and Heliospheric Observatory (SOHO) observes low ionization state coronal mass ejection plasma at ultraviolet wavelengths. The CME plasmas are often detected in O VI ($3{\times}10^5K$), C III ($8{\times}10^4K$), $Ly{\alpha}$, and $Ly{\beta}$. Earlier in situ observations by the Solar Wind Ion Composition Spectrometer (SWICS) on board Advanced Composition Explorer (ACE) have shown mostly high ionization state plasmas in interplanetary coronal mass ejections (ICME) events, which implies that most CME plasma is strongly heated during its expansion in solar corona. In this analysis, we investigate whether the low ionization state CME plasmas observed by UVCS occupy small enough fractions of the CME volume to be consistent with the small fraction of ICMEs measured by ACE that show low ionization plasma, or whether the CME must be further ionized after passing the UVCS slit. To do this, we determine the covering factors of low ionization state plasma for 10 CME events. We find that the low ionization state plasmas in CMEs observed by UVCS show small covering factors. This result shows that the high ionization state ICME plasmas observed by the ACE results from a small filling factor of cool plasma. We also find that the low ionization state plasma volumes in faster CMEs are smaller than in slower CMEs. Most slow CMEs in this analysis are associated with a prominence eruption, while the faster CMEs are associated with X-class flares.

  • PDF

STUDY OF MAGNETIC HELICITY IN SOLAR ACTIVE REGIONS AND ITS RELATIONSHIP WITH SOLAR ERUPTIONS

  • Park, Sung-Hong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2011
  • It is generally believed that eruptive phenomena in the solar atmosphere such as solar flares and coronal mass ejections (CMEs) occur in the solar active regions with complex magnetic structures. Magnetic helicity has been recognized as a useful parameter to measure the complexity such as twists, kinks, and inter-linkages of magnetic field lines. The objective of this study is to understand a long-term (a few days) variation of magnetic helicity in active regions and its relationship with the energy buildup and instability leading to flares and CMEs. Statistical studies of flare productivity and magnetic helicity injection in about 400 active regions were carried out. The temporal variation of magnetic helicity injected through the photosphere of active regions was also examined related to 46 CMEs. The main findings in this study are as follows: (1) the study of magnetic helicity for active regions producing major flares and CMEs indicates that there is always a significant helicity injection through the active-region photosphere over a long period of 0.5 - a few days before the flares and CMEs; (2) for the 30 CMEs under investigation, it is found that there is a fairly good correlation (linear correlation coefficient of 0.71) between the average helicity injection in the CME-productive active regions and the CME speed. Beside the scientific contribution, a major impact of this study is the observational discovery of a characteristic variation pattern of magnetic helicity injection in flare/CME-productive active regions which can be used for the improvement of solar eruption forecasting.

  • PDF

PROPAGATION OF CME IN MULTI-SATELLITE OBSERVATIONS (다중 위성 관측을 이용한 CME 전파 과정에 대한 연구)

  • 성숙경;이동훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.307-320
    • /
    • 1998
  • We investigate the propagation of Coronal Mass Ejections(CMEs) near the earth with multi-satellite observations. Among the CMEs observed in the near-earth between Nov. 1994 and Nov. 1997, we select two events of Jan. 6-11,1997 and Nov. 4-7, 1997 which were observed by more than 3 satellites when these satellites were located apart with a sufficient distance from each other. We determine the speed and propagation of the two CMEs by calculating the position of each satellite in various coordinates and the onset time of each event. The results show that the speed of CMEs becomes significantly reduced when the perturbation arrives in the magnetosphere. It is also suggested that the propagation of the CMEs is approximated as the -x direction in GSE coordinates in the near-earth space.

  • PDF

A NEW METHOD TO DETERMINE THE TEMPERATURE OF CMES USING A CORONAGRAPH FILTER SYSTEM

  • CHO, KYUHYOUN;CHAE, JONGCHUL;LIM, EUN-KYUNG;CHO, KYUNG-SUK;BONG, SU-CHAN;YANG, HEESU
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • The coronagraph is an instrument that enables the investigation of faint features in the vicinity of the Sun, particularly coronal mass ejections (CMEs). So far coronagraphic observations have been mainly used to determine the geometric and kinematic parameters of CMEs. Here, we introduce a new method for the determination of CME temperature using a two filter (4025 Å and 3934 Å) coronagraph system. The thermal motion of free electrons in CMEs broadens the absorption lines in the optical spectra that are produced by the Thomson scattering of visible light originating in the photosphere, which affects the intensity ratio at two different wavelengths. Thus the CME temperature can be inferred from the intensity ratio measured by the two filter coronagraph system. We demonstrate the method by invoking the graduated cylindrical shell (GCS) model for the 3-dimensional CME density distribution and discuss its significance.

Statistical study on the kinematic distribustion of coronal mass ejections from 1996 to 2015

  • Jeon, Seong-Gyeong;Moon, Yong-Jae;Yi, Kangwoo;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.61.4-62
    • /
    • 2017
  • In this study we have made a statistical investigation on the kinematic classification of coronal mass ejections (CMEs) using about 4,000 SOHO/LASCO CMEs from 1996 to 2015. For this we use their SOHO/LASCO C3 data and exclude all poor events. Using the constant acceleration model, we classify these CMEs into three groups: Acceleration group, Constant Velocity group, and Deceleration group. For classification we adopt four different methods: Acceleration method, Velocity Variation method, Height Contribution method, and Visual Inspection method. Our major results are as follows. First, the fractions of three groups depend on the method used. Second, the results of the Height Contribution method are most consistent with those of the Visual Inspection method, which is thought to be most promising. Third, the fractions of different kinematic groups for the Height contribution method are: Acceleration (35%), Constant speed (47%), and Deceleration (18%). Fourth, the fraction strongly depend on CME speed; the fraction of Acceleration decreases from 0.6 to 0.05 with CME speed; the fraction of Constant increases from 0.3 to 0.7; the fraction of Deceleration increases from 0.1 to 0.3. Finally we present dozens of CMEs with non-constant accelerations. It is found that about 40 % of these CMEs show quasi-periodic oscillations.

  • PDF

Statistical study on the kinematic classification of CMEs from 4 to 30 solar radii

  • Jeo, Seong-Gyeong;Moon, Yong-Jae;Cho, Il-Hyun;Lee, Harim;Yi, Kangwoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.54.3-54.3
    • /
    • 2018
  • In this study, we perform a statistical investigation on the kinematic classication of 4264 coronal mass ejections (CMEs) from 1996 to 2015 observed by SOHO/LASCO C3. Using the constant acceleration model, we classify these CMEs into three groups; deceleration, constant velocity, and acceleration motion. For this, we devise four dierent classication methods by acceleration, fractional speed variation, height contribution, and visual inspection. Our major results are as follows. First, the fractions of three groups depend on the method used. Second, about half of the events belong to the groups of acceleration and deceleration. Third, the fractions of three motion groups as a function of CME speed classied by the last three methods are consistent with one another. Fourth, according to the last three methods, the fraction of acceleration motion decreases as CME speed increases, while the fractions of other motions increase with speed. In addition, the acceleration motions are dominant in low speed CMEs whereas the constant velocity motions are dominant in high speed CMEs.

  • PDF

SVM을 이용한 지구에 영향을 미치는 Halo CME 예보

  • Choe, Seong-Hwan;Mun, Yong-Jae;Park, Yeong-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2013
  • In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.

  • PDF

Relationship between solar flares and halo CMEs using stereoscopic observations

  • Jang, Soojeong;Moon, Yong-Jae;Kim, Sujin;Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.82-82
    • /
    • 2016
  • To find the relationship between solar flares and halo CMEs using stereoscopic observations, we investigate 182 flare-associated halo CMEs among 306 front-side halo CMEs from 2009 to 2013. We have determined the 3D parameters (radial speed and angular width) of these CMEs by applying StereoCAT to multi-spacecraft data (SOHO and STEREO). For this work, we use flare parameters (peak flux and fluence) taken from GOES X-ray flare list and 2D CME parameters (projected speed, apparent angular width, and kinetic energy) taken from CDAW SOHO LASCO CME catalog. Major results from this study are as follows. First, the relationship between flare peak flux (or fluence) and CME speed is almost same for both 2D and 3D cases. Second, there is a possible correlation between flare fluence and CME width, which is more evident in 3D case than 2D one. Third, the flare fluence is well correlated with CME kinetic energy (CC=0.63). Fourth, there is an upper limit of CME kinetic energy for a given flare fluence (or peak flux). For example, a possible CME kinetic energy ranges from 1030.6 to 1033 erg for a given X1.0 class flare. Our results will be discussed in view of the physical mechanism of solar eruptions.

  • PDF