• Title/Summary/Keyword: CMB spectra

Search Result 3, Processing Time 0.019 seconds

CONSTRAINTS ON A-DECAYING COSMOLOGY FROM OBSERVATIONAL POINT OF VIEW

  • KOMIYA ZEN;KAWABATA KIYOSHI;HIRANO KOICHI;BUNYA HIROSHI;YAMAMOTO NAOTAKA
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.157-160
    • /
    • 2005
  • To constrain the values of the model parameters for the cosmological models involving the time-decaying $\Lambda$ term, we have computed sets of theoretical predictions for the N-m relation of galaxies as well as the CMB angular power spectrum: three types of variation, viz., ${\Lambda}{\propto} T^{-1},\;a^{-m}$, and $H^n$ are thereby assumed following Overduin & Cooperstock (1998), although we concentrate here on the discussion of the results obtained from the first type. Our results for the N-m relation indicate that the observed excess of the galaxy counts N in the faint region beyond the blue apparent magnitude 24 can be reasonably well accounted for with the value of ${\iota}$ in the range between 0.2 and 1. Furthermore, a comparison of our computational results of the CMB spectra with the observational data shows that the models with a mild degree of the $\Lambda$ term decay, viz., with the value of ${\iota}{\le}$0.4, are favorable. In this case, the age of our universe turns out to be larger than or equal to 14 Gyr, the lower limit inferred from some Uranium datings.

DYNAMICAL AND STATISTICAL ASPECTS OF GRAVITATIONAL CLUSTERING IN THE UNIVERSE

  • SAHNI V.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.19-21
    • /
    • 1996
  • We apply topological measures of clustering such as percolation and genus curves (PC & GC) and shape statistics to a set of scale free N-body simulations of large scale structure. Both genus and percolation curves evolve with time reflecting growth of non-Gaussianity in the N-body density field. The amplitude of the genus curve decreases with epoch due to non-linear mode coupling, the decrease being more noticeable for spectra with small scale power. Plotted against the filling factor GC shows very little evolution - a surprising result, since the percolation curve shows significant evolution for the same data. Our results indicate that both PC and GC could be used to discriminate between rival models of structure formation and the analysis of CMB maps. Using shape sensitive statistics we find that there is a strong tendency for objects in our simulations to be filament-like, the degree of filamentarity increasing with epoch.

  • PDF

LOCAL ANOMALIES AROUND THE THIRD PEAK IN THE CMB ANGULAR POWER SPECTRUM OF WMAP 7-YEAR DATA

  • Ko, Kyeong Yeon;Park, Chan-Gyung;Hwang, Jai-Chan
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.75-91
    • /
    • 2013
  • We estimate the power spectra of the cosmic microwave background radiation (CMB) temperature anisotropy in localized regions of the sky using the Wilkinson Microwave Anisotropy Probe (WMAP) 7-year data. We find that the north and south hat regions at high Galactic latitude ($|b|{\geq}30^{\circ}C$) show an anomaly in the power spectrum amplitude around the third peak, which is statistically significant up to 3. We try to explain the cause of the observed anomaly by analyzing the low Galactic latitude ($|b|$ < $30^{\circ}C$) regions where the galaxy contamination is expected to be stronger, and the regions weakly or strongly dominated byWMAP instrument noise. We also consider the possible effect of unresolved radio point sources. We find another but less statistically significant anomaly in the low Galactic latitude north and south regions whose behavior is opposite to the one at high latitude. Our analysis shows that the observed north-south anomaly at high latitude becomes weaker on regions with high number of observations (weak instrument noise), suggesting that the anomaly is significant at sky regions that are dominated by the WMAP instrument noise. We have checked that the observed north-south anomaly has weak dependences on the bin-width used in the power spectrum estimation, and on the Galactic latitude cut. We also discuss the possibility that the detected anomaly may hinge on the particular choice of the multipole bin around the third peak. We anticipate that the issue of whether or not the anomaly is intrinsic one or due to WMAP instrument noise will be resolved by the forthcoming Planck data.