• Title/Summary/Keyword: CMB model

Search Result 44, Processing Time 0.018 seconds

Development of the vac Source Profile using Collinearity Test in the Yeosu Petrochemical Complex (여수석유화학산단의 공선성 시험을 이용한 VOC 오염원 분류표 개발)

  • Jeon Jun-Min;Hur Dang;Hwang In Jo;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.315-327
    • /
    • 2005
  • The total of 35 target VOCs (volatile organic compounds), which were included in the TO-14, was selected to develop a VOCs' source profile matrix of the Yeosu Petrochemical Complex and to test its collinearity by singular value decomposition(SVD) technique. The VOCs collected in canisters were sampled from 12 different sources such as 8 direct emission sources (refinery, painting, wastewater treatment plant, incinerator, petrochemical processing, oil storage, fertilizer plant, and iron mill) and 4 general area sources (gasoline vapor emission, graphic art activity, vehicle emission, and asphalt paving activity) in this study area, and then those samples were analyzed by GC/MS. Initially the resulting raw data for each profile were scaled and normalized through several data treatment steps, and then specific VOCs showing major weight fractions were intensively reviewed and compared by introducing many other related studies. Next, all of the source profiles were tested in terms of degree of collinearity by SVD technique. The study finally could provide a proper VOCs' source profile in the study area, which can give opportunities to apply various receptor models properly including chemical mass balance (CMB).

Application of Representative $PM_{2.5}$ Source Profiles for the Chemical Mass Balance Study in Seoul

  • Kang, Choong-Min;Kang, Byung-Wook;SunWoo, Young;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.32-43
    • /
    • 2008
  • Source samples were collected to construct source profiles for 9 different source types, including soil, road dust, gasoline/diesel-powered vehicles, a municipal incinerator, industrial sources, agricultural/biomass burning, marine aerosol, and a coal-fired power plant. Seasonal profiles for 'Chinese aerosol', aerosols derived from the urban area of China, were reconstructed from seasonal $PM_{2.5}$ compositions reported in Beijing, China. Ambient $PM_{2.5}$ at a receptor site was also measured during each of the four seasons, from April 2001 to February 2002, in Seoul. The Chemical Mass Balance receptor model was applied to quantify source contributions during the study period using the estimated source profiles. Consequently, motor vehicle exhaust (33.0%), in particular 23.9% for diesel-powered vehicles, was the largest contributor affecting the $PM_{2.5}$ levels in Seoul, followed by agricultural/biomass burning (21.5%) and 'Chinese aerosol' (13.1%), indicating contributions from long-range transport. The largest contributors by season were: for spring, 'Chinese aerosol' (31.7%); for summer, motor vehicle exhaust (66.9%); and for fall and winter, agricultural/biomass burning (31.1% and 40.1%, respectively). These results show different seasonal patterns and sources affecting the $PM_{2.5}$ level in Seoul, than those previously reported for other cities in the world.

A Study on the Source Profile Development for Fine Particles (PM2.5) Emitted from Meat Cooking (고기구이에서 배출되는 미세입자 (PM2.5)의 배출원 구성물질 성분비 개발에 관한 연구)

  • Kang, Byung-Wook;Jeon, Jun-Min;Lee, Hak Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.18-25
    • /
    • 2014
  • This study was performed to develop the source profiles for fine particles ($PM_{2.5}$) emitted from the meat cooking. The characterization of fine particles emitted from beef cooking showed comparably high level of carbon (75%) which mainly composed of OC (73%) and EC (2.3%). Also the level of $K^+$, $Cl^-$, K, Cl, and $Na^+$ has been diagnosed to be relatively high, mainly caused by the Korean spice with sodium component. The cooking of pork showed similar trend to the beef, resulting high level of OC, EC, $K^+$, $Cl^-$, K, Cl, and $Na^+$ as the major components of fine particles. The high proportions of metal's ingredient such as Zn and Pb have been spotted to be 0.463% and 0.386%, respectively. The higher ratio of OC has been collected for raw pork belly meat compared to seasoned meat in respond to presence of fat. The cooking of chicken and duck brought similar data that OC, $K^+$, K, $Cl^-$, Cl, EC, $NO_3{^-}$, and $SO{_4}^{2-}$ were main components of fine particles. The one notable feature is that Zn and Pb showed to be almost absent.

Determination of Cholesterol, Fatty Acids and Polyaromatic Hydrocarbons in PM10 Particles Collected from Meat Charbroiling (고기구이 스모크에서 채취한 PM10입자에서 콜레스테롤, 지방산과 PAH의 분포)

  • Seo, Young-Hwa;Ko, Kwang-Youn;Jang, Young-Kee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.155-164
    • /
    • 2010
  • Emission from biomass combustion such as meat charbroiling is an important source of organic aerosol. Since source profiles are necessary input profiles for source apportionment of aerosol by a chemical mass balance model, meat cooking organic source profiles are developed by measuring organic marker compounds, including palmitic acid, stearic acid, oleic acid and cholesterol as well as PAH compounds. Emissions from meat and pork charbroiling are collected on quartz filters with a PM10-high volume sampler, extracted with organic solvents, derivatized with diazomethane/TMS and analyzed by GC/MS isotope dilution method. Organic and elemental carbon are also analyzed by an OCEC analyzer. Wt.% of cholesterol to the organic carbon(OC) content from beef and pork charbroiling is only 0.056 and 0.062, but wt. % of all saturated fatty acids to the OC content from beef and pork charbroiling is 2.727 and 2.022, and the wt% of all unsaturated fatty acids to the OC content is 0.278 and 0.438, respectively. Content of total PAH compounds to the OC content from beef charbroiling is higher than that from pork charbroiling, and those are 0.116 wt% and 0.044 wt%. Among PAH compounds benzo(a)pyrene as a single compound is account for 0.0071 wt% and 0.0023 wt% of OC content from beef and pork charbroiling. Ratios of marker compound to cholesterol are calculated, and those values are in good agreement with the values already reported at the food cooking emission, indicating that they can be used as organic source profiles for the apportionment of organic aerosol.